Floating Point Numbers

- C has three floating point types
 - float... typically 32-bit (lower precision, narrower range)
 - double... typically 64-bit (higher precision, wider range)
 - long double... typically 128-bits (but maybe only 80 bits used)
- Floating point constants, e.g: \(3.14159\ 1.0e-9\) are double
- Reminder: division of 2 ints in C yields an int.
 - but division of double and int in C yields a double.

```c
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d);  // prints 0.571429
// prints in scientific notation
printf("%le\n", d);  // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d);  // prints 0.571429
// prints in decimal with 9 decimal places
printf("%9lf\n", d);  // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d);  // prints 0.6
```

Source code for float_output.c
Floating Point Numbers

- can have fractional numbers in other bases, e.g.: $110.101_2 = 6.625_{10}$
- if we represent floating point numbers with a fixed small number of bits
 - there are only a finite number of bit patterns
 - can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exact representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes ... can be disastrous

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Floating-Point Numbers

Fixed-Point Representation

- fixed-point is a simple trick to represent fractional numbers as integers
 - every value is multiplied by a particular constant, e.g. 1000 and stored as integer
 - so if constant is 1000, could represent 56.125 as an integer (56125)
 - but not 3.141592
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point
- major limitation is only small range of values can be represented
 - for example with 32 bits, and using $65536 = 2^{16}$ as constant
 - 16 bits used for integer part
 - 16 bits used for the fraction
 - minimum $2^{-16} \approx 0.000015$
 - maximum $2^{15} \approx 32768$

exponential representation - a better approach

- you've met scientific notation, e.g. 6.0221515×10^{23} elsewhere
 - we can represent numbers in a similar way to scientific notation
 - but using binary, e.g. $1.0101011 \times 2^{11.2} = 1.3359375 \times 8 = 10.6875$
 - allows much bigger range of values than fixed point
 - using only 8 bits for the exponent, we can represent numbers from $10^{-38} \ldots 10^{+38}$
 - using only 11 bits for the exponent, we can represent numbers from $10^{-308} \ldots 10^{+308}$
 - leads to numbers close to zero have higher precision (more accurate) which is good
choosing which exponentional representation

- exponent notation allows multiple representations for a single value
 - e.g. 1.0101011×2^{11} and 10.10111×2^2

- having multiple representations would make arithmetic slower on CPU

- want only one representation (one bit pattern) representing a value

- decision - use representation with exactly one digit in front of decimal point
 - use 1.0101011×2^{11} not 10.10111×2^2 or 1010.111×2^{0}
 - this is called normalization

- weird hack: as we are using binary the first digit must be a one we don't need to represent it
 - as we long we have a separate representation for zero

`floating_types.c` - print characteristics of floating point types

```c
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g \n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g \n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg \n", sizeof l, LDBL_MIN, LDBL_MAX);
```

source code for `floating_types.c`

```bash
$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
```

IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: `sign`, `fraction` and `exponent`
- numbers have form $sign \times fraction \times 2^{exponent}$, where $sign$ is +/-
- `fraction` always has 1 digit before decimal point (normalized)
- `exponent` is stored as positive number by adding constant value (bias)
Example of normalising the fraction part in binary:

- 1010.1011 is normalized as 1.0101011 * 2^{011}
- 1010.1011 = 10 + 11/16 = 10.6875
- 1.0101011 * 2^{011} = (1 + 43/128) * 2^3 = 1.3359375 * 8 = 10.6875

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- If exponent is 8-bits, then the bias = $2^{8-1} - 1 = 127$
- Valid bit patterns for exponent are 00000001 .. 11111110
- These correspond to exponent values of -126 .. 127

Floating Point Numbers

Internal structure of floating point values

```
sign | exp | fraction
   | 8 bits | 23 bits
```

```
sign | exp | fraction
   | 11 bits | 52 bits
```

Distribution of Floating Point Numbers

- Floating point numbers not evenly distributed
- Representations get further apart as values get bigger
 - This works well for most calculations
 - But can cause weird bugs
- Double (IEEE 754 64 bit) has 52-bit fractions so:
 - Between 2^n and 2^{n+1} there are 2_{52} doubles evenly spaced
 - E.g. in the interval 2^{-42} and 2^{-41}, there are 2_{52} doubles
 - And in the interval between 1 and 2, there are 2_{52} doubles
 - And in the interval between 242 and 243, there are 2_{52}
 - So near 0.001 doubles are about 0.000000000000000002 apart
 - So near 1000 doubles are about 0.0000000000000002 apart
 - So near 100000000000000 doubles are about 0.25 apart
 - Above 2_{53} doubles are more than 1 apart
0.15625 is represented in IEEE-754 single-precision by these bits:
00111110000000000000000000000000
sign | exponent | fraction
 0 | 01111100 | 01000000000000000000000
sign bit = 0
raw exponent = 01111100 binary
= 124 decimal
actual exponent = 124 - exponent_bias
= 124 - 127
= -3
number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

source code for explain_float_representation.c

$./explain_float_representation -0.125
-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000
sign | exponent | fraction
 1 | 01111100 | 00000000000000000000000
sign bit = 1
raw exponent = 01111100 binary
= 124 decimal
actual exponent = 124 - exponent_bias
= 124 - 127
= -3
number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125

$./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
sign | exponent | fraction
 0 | 10000110 | 00101101100000000000000
sign bit = 0
raw exponent = 10000110 binary
= 134 decimal
actual exponent = 134 - exponent_bias
= 134 - 127
= 7
number = +1.00101101100000000000000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75
$./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
110000101100000001000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000101</td>
<td>100000001000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -
raw exponent = 10000101 binary
 = 133 decimal
actual exponent = 133 - exponent_bias
 = 133 - 127
 = 6
number = -1.10000000100000000000000 binary * 2**6
 = -1.50195 decimal * 2**6
 = -1.50195 * 64
 = -96.125

$./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary
 = 123 decimal
actual exponent = 123 - exponent_bias
 = 123 - 127
 = -4
number = +1.10011001100110011001101 binary * 2**-4
 = 1.6 decimal * 2**-4
 = 1.6 * 0.0625
 = 0.1

infinity.c: exploring infinity

- IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations

double x = 1.0/0.0;
printf("%lf\n", x); // prints inf
printf("%lf\n", -x); // prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagate sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x);  // prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

IEEE-754 Single Precision example: `inf`

```
$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111110000000000000000000000
sign | exponent | fraction
   0 | 11111111 | 00000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
               = 255 decimal
number = +inf
```

IEEE-754 Single Precision exploring bit patterns #2

```
$ ./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
               = 255 decimal
number = NaN
```
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) {
 // better would be fabs(b) > 0.000001
 printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16

Another reason not to use == with floating point values
if (d == d) {
 printf("d == d is true\n");
} else {
 // will be executed if d is a NoN
 printf("d == d is not true\n");
}
if (d == d + 1) {
 // may be executed if d is large
 // because closest possible representation for d + 1
 // is also closest possible representation for d
 printf("d == d + 1 is true\n");
} else {
 printf("d == d + 1 is false\n");
}
Another reason not to use == with floating point values

```bash
$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
  d = 42.3
  d == d is true
  d == d + 1 is false
$ ./double_not_always 4200000000000000000
  d = 4.2e+18
  d == d is true
  d == d + 1 is true
$ ./double_not_always NaN
  d = nan
  d == d is not true
  d == d + 1 is false
```

because closest possible representation for d + 1 is also closest possible representation for d

source code for double_not_always.c

Consequences of most reals not having exact representations

```c
// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

source code for double_disaster.c

- 9007199254740993 is \(2^{53} + 1\)
 - it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a int32_t
 - it can be represented by int64_t

Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000000000000
1 01111110 10000000000000000000000000000000