
COMP1521 23T1 — Processes

https://www.cse.unsw.edu.au/~cs1521/23T1/

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 1 / 32

Environment Variables

When run, a program is passed a set of environment variables
an array of strings of the form name=value, terminated with NULL.

access via global variable environ

many C implementations also provide as 3rd parameter to main:

int main(int argc, char *argv[], char *env[])

// print all environment variables
extern char **environ;
for (int i = 0; environ[i] != NULL; i++) {

printf("%s\n", environ[i]);
}
source code for environ.c

Recommended you use getenv() and setenv() to access environment variables

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 2 / 32

getenv() — get an environment variable

#include <stdlib.h>

char *getenv(const char *name);

search environment variable array for name=value
returns value
returns NULL if name not in environment variable array

int main(void) {
// print value of environment variable STATUS
char *value = getenv("STATUS");
printf("Environment variable 'STATUS' has value '%s'\n", value);

source code for get_status.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 3 / 32

setenv() — set an environment variable

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

adds name=value to environment variable array
if name in array, value changed if overwrite is non-zero

// set environment variable STATUS
setenv("STATUS", "great", 1);
char *getenv_argv[] = {"./get_status", NULL};
pid_t pid;
extern char **environ;
if (posix_spawn(&pid, "./get_status", NULL, NULL,

getenv_argv, environ) != 0) {
perror("spawn");
exit(1);

}
source code for set_status.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 4 / 32

Environment Variables - Why are they useful

Unix-like shells have simple syntax to set environment variables
common to set environment in startup files (e.g .profile)
then passed to any programs they run

Almost all program pass the environment variables they are given to any programs they run
perhaps adding/changing the value of specific environment variables

Provides simple mechanism to pass settings to all programs, e.g
timezone (TZ)
user’s prefered language (LANG)
directories to search for promrams (PATH)
user’s home directory (HOME)

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 5 / 32

Example: Changing behaviour with an environment variable

pid_t pid;
char *date_argv[] = { "/bin/date", NULL };
char *date_environment[] = { "TZ=Australia/Perth", NULL };
// print time in Perth
if (posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv,

date_environment) != 0) {
perror("spawn");
return 1;

}
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
return 1;

}
printf("/bin/date exit status was %d\n", exit_status);
source code for spawn_environment.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 6 / 32

Processes

A process is an instance of an executing program.

Each process has an execution state, defined by…

current values of CPU registers
current contents of its memory
information about open files (and other results of system calls)

On Unix/Linux:

each process had a unique process ID, or PID: a positive integer, type pid_t, defined in <unistd.h>

PID 1: init, used to boot the system.

low-numbered processes usually system-related, started at boot

… but PIDs are recycled, so this isn’t always true

some parts of the operating system may appear to run as processes

many Unix-like systems use PID 0 for the operating system

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 7 / 32

Process Parents

Each process has a parent process.

initially, the process that created it;
if a process’ parent terminates, its parent becomes init (PID 1)

Unix provides a range of commandss for manipulating processes, e.g.:

sh … creating processes via object-file name
ps … showing process information
w … showing per-user process information
top … showing high-cpu-usage process information
kill … sending a signal to a process

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 8 / 32

Multi-Tasking

On a typical modern operating system…

multiple processes are active “simultaneously” (multi-tasking)
operating systems provides a virtual machine to each process:

each process executes as if the only process running on the machine
e.g. each process has its own address space (N bytes, addressed 0..N-1)

When there are multiple processes running on the machine,

a process uses the CPU, until it is preempted or exits;
then, another process uses the CPU, until it too is preempted.
eventually, the first process will get another run on the CPU.

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 9 / 32

Multi-tasking

Overall impression: three programs running simultaneously. (In practice, these time divisions are imperceptibly
small!)

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 10 / 32

Preemption — When? How?

What can cause a process to be preempted?

it ran “long enough”, and the OS replaces it by a waiting process
it needs to wait for input, output, or other some other operation

On preemption…

the process’s entire state is saved
the new process’s state is restored
this change is called a context switch
context switches are very expensive!

Which process runs next? The *scheduler answers this. The operating system’s process scheduling attempts to:

fairly sharing the CPU(s) among competing processes,
minimize response delays (lagginess) for interactive users,
meet other real-time requirements (e.g. self-driving car),
minimize number of expensive context switches

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 11 / 32

Unix/Linux Processes

Environment for processes running on Unix/Linux systems

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 12 / 32

Process-related Unix/Linux Functions/System Calls

Process information:

getpid() … get process ID
getppid() … get parent process ID
getpgid() … get process group ID

Creating processes:

system(), popen() … create a new process via a shell - convenient but major security risk
posix_spawn() … create a new process.
fork() vfork() … duplicate current process. (do not use in new code)
exec() family … replace current process.

Destroying processes:

exit() … terminate current process, see also
_exit() … terminate immediately
atexit functions not called, stdio buffers not flushed

waitpid() … wait for state change in child process

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 13 / 32

exec() family - replace yourself

#include <unistd.h>

int execvp(const char *file, char *const argv[]);

Run another program in place of the current process:
file: an executable — either a binary, or script starting with #!
argv: arguments to pass to new program

Most of the current process is re-initialized:
e.g. new address space is created - all variables lost

open file descriptors survive
e.g, stdin & stdout remain the same

PID unchanged
if successful, exec does not return … where would it return to?
on error, returns -1 and sets errno

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 14 / 32

Example: using exec()

int main(void) {
char *echo_argv[] = {"/bin/echo","good-bye","cruel","world",NULL};
execv("/bin/echo", echo_argv);
// if we get here there has been an error
perror("execv");

source code for exec.c

$ dcc exec.c
$ a.out
good-bye cruel world
$

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 15 / 32

fork() — clone yourself (OBSOLETE)

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

Creates new process by duplicating the calling process.

new process is the child, calling process is the parent

Both child and parent return from fork() call… how do we tell them apart?

in the child, fork() returns 0
in the parent, fork() returns the pid of the child
if the system call failed, fork() returns -1

Child inherits copies of parent’s address space, open file descriptors, …

Do not use in new code! Use posix_spawn() instead.

fork() appears simple, but is prone to subtle bugs

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 16 / 32

Example: using fork() (OBSOLETE)

// fork creates 2 identical copies of program
// only return value is different
pid_t pid = fork();
if (pid == -1) {

perror("fork"); // print why the fork failed
} else if (pid == 0) {

printf("I am the child because fork() returned %d.\n", pid);
} else {

printf("I am the parent because fork() returned %d.\n", pid);
}
source code for fork.c

$ dcc fork.c
$ a.out
I am the parent because fork() returned 2884551.
I am the child because fork() returned 0.
$

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 17 / 32

waitpid() — wait for a process to change state
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *wstatus, int options);

waitpid pauses current process until process pid changes state

where state changes include finishing, stopping, re-starting, …

ensures that child resources are released on exit

special values for pid …

if pid = -1, wait on any child process
if pid = 0, wait on any child in process group
if pid > 0, wait on specified process

pid_t wait(int *wstatus);

equivalent to waitpid(-1, &status, 0)
pauses until any child processes terminates.

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 18 / 32

waitpid() — wait for a process to change state

pid_t waitpid(pid_t pid, int *wstatus, int options);

status is set to hold info about pid.

e.g., exit status if pid terminated
macros allow precise determination of state change
(e.g. WIFEXITED(status), WCOREDUMP(status))

options provide variations in waitpid() behaviour

default: wait for child process to terminate
WNOHANG: return immediately if no child has exited
WCONTINUED: return if a stopped child has been restarted

For more information, man 2 waitpid.

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 19 / 32

Example: Using fork() and exec() to run /bin/date

pid_t pid = fork();
if (pid == -1) {

perror("fork"); // print why fork failed
} else if (pid == 0) { // child

char *date_argv[] = {"/bin/date", "--utc", NULL};
execv("/bin/date", date_argv);
perror("execvpe"); // print why exec failed

} else { // parent
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

}
printf("/bin/date exit status was %d\n", exit_status);

}
source code for fork_exec.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 20 / 32

Example: one of the dangers of fork - a fork bomb

#include <stdio.h>
#include <unistd.h>
int main(void) {

// creates 2 ** 10 = 1024 processes
// which all print fork bomb then exit
for (int i = 0; i < 10; i++) {

fork();
}
printf("fork bomb\n");
return 0;

}
source code for fork_bomb.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 21 / 32

system() — convenient but unsafe way to run another program

#include <stdlib.h>

int system(const char *command);

Runs command via /bin/sh.

Waits for command to finish and returns exit status

Convenient … but extremely dangerous —
very brittle; highly vulnerable to security exploits

use for quick debugging and throw-away programs only

// run date --utc to print current UTC
int exit_status = system("/bin/date --utc");
printf("/bin/date exit status was %d\n", exit_status);
return 0;
source code for system.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 22 / 32

posix_spawn() — Run a new process

#include <spawn.h>

int posix_spawn(
pid_t *pid, const char *path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp,
char *const argv[], char *const envp[]);

Creates a new process.

path: path to the process to run
argv: arguments to pass to new program
envp: environment to pass to new program
pid: returns process id of new program
file_actions: specifies file actions to be performed before running program

can be used to redirect stdin, stdout to file or pipe
attrp: specifies attributes for new process

not used/covered in COMP1521

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 23 / 32

Example: using posix_spawn() to run /bin/date
pid_t pid;
extern char **environ;
char *date_argv[] = {"/bin/date", "--utc", NULL};
// spawn "/bin/date" as a separate process
if (posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ) != 0) {

perror("spawn");
exit(1);

}
// wait for spawned processes to finish
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

}
printf("/bin/date exit status was %d\n", exit_status);
source code for spawn.c Example:posix_spawn() versus system()
==

Running ls -ld via posix_spawn()

char *ls_argv[2] = {"/bin/ls", "-ld", NULL};
pid_t pid;
extern char **environ;
if (posix_spawn(&pid, "/bin/ls", NULL, NULL, ls_argv, environ) != 0) {

perror("spawn"); exit(1);
}
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

}

Running ls -ld via system()

system("ls -ld");

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 24 / 32

getpid(), getppid() — get process IDs

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

getpid returns the process ID of the current process.

getppid returns the process ID of the current process’ parent.

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 25 / 32

Aside: Zombie Processes (advanced)

A process cannot terminate until its parent is notified. - notification is via wait/waitpid or SIGCHLD signal

Zombie process = exiting process waiting for parent to handle notification

parent processes which don’t handle notification create long-term zombie processes
wastes some operating system resources

Orphan process = a process whose parent has exited

when parent exits, orphan assigned PID 1 (init) as its parent
init always accepts notifications of child terminations

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 26 / 32

exit() — terminate yourself

#include <stdlib.h>

void exit(int status);

triggers any functions registered as atexit()
flushes stdio buffers; closes open FILE *’s
terminates current process
a SIGCHLD signal is sent to parent
returns status to parent (via waitpid())
any child processes are inherited by init (pid 1)

void _exit(int status);

terminates current process without triggering functions registered as atexit()
stdio buffers not flushed

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 27 / 32

pipe() — stream bytes between processes

#include <unistd.h>

int pipe(int pipefd[2]);

A pipe is a unidirectional byte stream provided by the operating system.

pipefd[0]: set to file descriptor of read end of pipe
pipefd[1]: set to file descriptor of write end of pipe
bytes written to pipefd[1] will be read from pipefd[1]

Child processes (by default) inherit file descriptors including for pipe

Parent can send/receive bytes (not both) to child via pipe

parent and child should both close the pipe file descriptor they are not using
e.g if bytes being written (sent) parent to child

parent should close read end pipefd[0]
child should close write end pipefd[1]

Pipe file descriptors can be used with stdio via fdopen.

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 28 / 32

popen() — a convenient but unsafe way to set up pipe

#include <stdio.h>

FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

runs command via /bin/sh

if type is “w” pipe to stdin of command created

if type is “r” pipe from stdout of command created

FILE * stream returned - get then use fgetc/fputc etc

NULL returned if error

close stream with pclose (not fclose)

pclose waits for command and returns exit status

Convenient, but brittle and highly vulnerable to security exploits …
use for quick debugging and throw-away programs only

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 29 / 32

Example: capturing process output with popen()

// popen passes string to a shell for evaluation
// brittle and highly-vulnerable to security exploits
// popen is suitable for quick debugging and throw-away programs only
FILE *p = popen("/bin/date --utc", "r");
if (p == NULL) {

perror("");
return 1;

}
char line[256];
if (fgets(line, sizeof line, p) == NULL) {

fprintf(stderr, "no output from date\n");
return 1;

}
printf("output captured from /bin/date was: '%s'\n", line);
pclose(p); // returns command exit status
source code for read_popen.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 30 / 32

Example: sending input to a process with popen()

int main(void) {
// popen passes command to a shell for evaluation
// brittle and highly-vulnerable to security exploits
// popen is suitable for quick debugging and throw-away programs only
//
// tr a-z A-Z - passes stdin to stdout converting lower case to upper case
FILE *p = popen("tr a-z A-Z", "w");
if (p == NULL) {

perror("");
return 1;

}
fprintf(p, "plz date me\n");
pclose(p); // returns command exit status
return 0;

}
source code for write_popen.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 31 / 32

posix_spawn and pipes (advanced topic)

int posix_spawn_file_actions_destroy(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_init(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_addclose(
posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_adddup2(
posix_spawn_file_actions_t *file_actions, int fildes, int newfildes);

functions to combine file operations with posix_spawn process creation
awkward to understand and use — but robust

Example: capturing output from a process:
source code for spawn_read_pipe.c

Example: sending input to a process:
source code for spawn_write_pipe.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Processes 32 / 32

