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Floating Point Numbers

C has three floating point types

float … typically 32-bit (lower precision, narrower range)
double … typically 64-bit (higher precision, wider range)
long double … typically 128-bits (but maybe only 80 bits used)

Floating point constants, e.g : 3.14159 1.0e-9 are double

Reminder: division of 2 ints in C yields an int.

but division of double and int in C yields a double.
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Floating Point Number - Output

double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6
source code for float_output.c
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Floating Point Numbers

can have fractional numbers in other bases, e.g.:110.1012 == 6.62510

if we represent floating point numbers with a fixed small number of bits

there are only a finite number of bit patterns
can only represent a finite subset of reals

almost all real values will have no exact representation

value of arithmetic operations may be real with no exact representation

we must use closest value which can be exactly represented

this approximation introduces an error into our calculations

often, does not matter

sometimes … can be disasterous
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Fixed-Point Representation

fixed-point is a simple trick to represent fractional numbers as integers
every value is multiplied by a particular constant, e.g. 1000 and stored as integer
so if constant is 1000, could represent 56.125 as an integer (56125)
but not 3.141592

usable for some problems, but not ideal

used on small embedded processors without silicon floating point

major limitation is only small range of values can be represented
for example with 32 bits, and using 65536 ( 216 ) as constant

16 bits used for integer part
16 bits used for the fraction

minimum 2−16 ≈ 0.000015
maximum 215 ≈ 32768
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exponentional representation - a better approach

you’ve met scientific notation, e.g 6.0221515 * 10^23 elsewhere

-we can represent numbers in a similar way to scientific notation

but using binary, e.g 1.0101011 ∗ 2112 = 1.3359375 ∗ 8 = 10.6875

allows much bigger range of values than fixed point

using only 8 bits for the exponent, we can represent numbers from 10−38 .. 10+38

using only 11 bits for the exponent, we can represent numbers from 10−308 .. 10+308

leads to numbers close to zero have higher precision (more accurate) which is good
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choosing which exponentional representation

exponent notation allows multiple representations for a single value
e.g 1.0101011 ∗ 2112 == 10.6875 and 10.101011 ∗ 2102 == 10.6875

having multiple representations would make arithmetic slower on CPU

want only one representation (one bit pattern) representing a value

decision - use representation with exactly one digit in front of decimal point

use 1.0101011 ∗ 2112 not 10.101011 ∗ 2102 or 1010.1011 ∗ 202

this is called normalization

weird hack: as we are using binary the first digit must be a one we don’t need to represent it

as we long we have a separate representation for zero
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floating_types.c - print characteristics of floating point types

float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
source code for floating_types.c

$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
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IEEE 754 standard

C floats almost always IEEE 754 single precision (binary32)

C double almost always IEEE 754 double precision (binary64)

C long double might be IEEE 754 (binary128)

IEEE 754 representation has 3 parts: sign, fraction and exponent

numbers have form 𝑠𝑖𝑔𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, where 𝑠𝑖𝑔𝑛 is +/-

fraction always has 1 digit before decimal point (normalized)

exponent is stored as positive number by adding constant value (bias)
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Floating Point Numbers

Example of normalising the fraction part in binary:

1010.1011 is normalized as 1.0101011 ∗ 2011

1010.1011 = 10 + 11/16 = 10.6875

1.0101011 ∗ 2011 = (1 + 43/128) ∗ 23 = 1.3359375 ∗ 8 = 10.6875

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

if exponent is 8-bits, then the bias = 28−1 − 1 = 127

valid bit patterns for exponent are 00000001 .. 11111110

these correspond to exponent values of -126 .. 127
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Floating Point Numbers
Internal structure of floating point values
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Distribution of Floating Point Numbers

floating point numbers not evenly distributed

representations get further apart as values get bigger
this works well for most calculations
but can cause weird bugs

double (IEEE 754 64 bit) has 52-bit fractions so:

between 2𝑛 and 2𝑛+1 there are 252 doubles evenly spaced
e.g. in the interval 2−42 and 2−43 there are 252 doubles
and in the interval between 1 and 2 there are 252 doubles
and in the interval between 242 and 243 there are 252

so near 0.001 doubles are about 0.0000000000000000002 apart

so near 1000 doubles are about 0.0000000000002 apart

so near 1000000000000000 doubles are about 0.25 apart

above 253 doubles are more than 1 apart
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IEEE-754 Single Precision example: 0.15625

0.15625 is represented in IEEE-754 single-precision by these bits:
00111110001000000000000000000000
sign | exponent | fraction

0 | 01111100 | 01000000000000000000000
sign bit = 0
sign = +
raw exponent = 01111100 binary

= 124 decimal
actual exponent = 124 - exponent_bias

= 124 - 127
= -3

number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

source code for explain_float_representation.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Floating-Point Numbers 13 / 27

https://cgi.cse.unsw.edu.au/~cs1521/23T1//topic/floating_point/code/explain_float_representation.c
https://www.cse.unsw.edu.au/~cs1521/23T1/


IEEE-754 Single Precision example: -0.125

$ ./explain_float_representation -0.125
-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000
sign | exponent | fraction

1 | 01111100 | 00000000000000000000000
sign bit = 1
sign = -
raw exponent = 01111100 binary

= 124 decimal
actual exponent = 124 - exponent_bias

= 124 - 127
= -3

number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125
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IEEE-754 Single Precision example: 150.75

$ ./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
sign | exponent | fraction

0 | 10000110 | 00101101100000000000000
sign bit = 0
sign = +
raw exponent = 10000110 binary

= 134 decimal
actual exponent = 134 - exponent_bias

= 134 - 127
= 7

number = +1.00101101100000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Floating-Point Numbers 15 / 27

https://www.cse.unsw.edu.au/~cs1521/23T1/


IEEE-754 Single Precision example: -96.125

$ ./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000
sign | exponent | fraction

1 | 10000101 | 10000000100000000000000
sign bit = 1
sign = -
raw exponent = 10000101 binary

= 133 decimal
actual exponent = 133 - exponent_bias

= 133 - 127
= 6

number = -1.10000000100000000000000 binary * 2**6
= -1.50195 decimal * 2**6
= -1.50195 * 64
= -96.125
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IEEE-754 Single Precision exploring bit patterns #1

$ ./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary

= 123 decimal
actual exponent = 123 - exponent_bias

= 123 - 127
= -4

number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1
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infinity.c: exploring infinity

IEEE 754 has a representation for +/- infinity
propagates sensibly through calculations

double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
source code for infinity.c
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nan.c: handling errors robustly

C (IEEE-754) has a representation for invalid results:
NaN (not a number)

ensures errors propagates sensibly through calculations

double x = 0.0/0.0;
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
source code for nan.c
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IEEE-754 Single Precision example: inf

$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000
sign | exponent | fraction

0 | 11111111 | 00000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary

= 255 decimal
number = +inf
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IEEE-754 Single Precision exploring bit patterns #2

$ ./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary

= 255 decimal
number = NaN
source code for explain_float_representation.c

https://www.cse.unsw.edu.au/~cs1521/23T1/ COMP1521 23T1 — Floating-Point Numbers 21 / 27

https://cgi.cse.unsw.edu.au/~cs1521/23T1//topic/floating_point/code/explain_float_representation.c
https://www.cse.unsw.edu.au/~cs1521/23T1/


Consequences of most reals not having exact representations

double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) { // better would be fabs(b) > 0.000001

printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16
source code for double_imprecision.c

do not use == and != with floating point values
instead check if values are close
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Consequences of most reals not having exact representations

double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16
source code for double_catastrophe.c
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Another reason not to use == with floating point values

if (d == d) {
printf("d == d is true\n");

} else {
// will be executed if d is a NaN
printf("d == d is not true\n");

}
if (d == d + 1) {

// may be executed if d is large
// because closest possible representation for d + 1
// is also closest possible representation for d
printf("d == d + 1 is true\n");

} else {
printf("d == d + 1 is false\n");

}
source code for double_not_always.c
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Another reason not to use == with floating point values

$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$ ./double_not_always 4200000000000000000
d = 4.2e+18
d == d is true
d == d + 1 is true
$ ./double_not_always NaN
d = nan
d == d is not true
d == d + 1 is false

because closest possible representation for d + 1 is also closest possible representation for d
source code for double_not_always.c
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Consequences of most reals not having exact representations

// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {

printf("%lf\n", d); // always prints 9007199254740992.000000
// 9007199254740993 can not be represented as a double
// closest double is 9007199254740992.0
// so 9007199254740992.0 + 1 = 9007199254740992.0
d = d + 1;

}
source code for double_disaster.c

9007199254740993 is 253 + 1
it is smallest integer which can not be represented exactly as a double
The closest double to 9007199254740993 is 9007199254740992.0
aside: 9007199254740993 can not be represented by a int32_t
it can be represented by int64_t
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Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.

Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000
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