COMP1521 23 T1 - Floating-Point Numbers

https://www.cse.unsw.edu.au/~cs1521/23T1/

- C has three floating point types
- float ... typically 32 -bit (lower precision, narrower range)
- double ... typically 64-bit (higher precision, wider range)
- long double ... typically 128 -bits (but maybe only 80 bits used)
- Floating point constants, e.g : 3.141591.0e-9 are double
- Reminder: division of 2 ints in C yields an int.
- but division of double and int in C yields a double.

Floating Point Number - Output

```
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6
```

source code for float_output.c

- can have fractional numbers in other bases, e.g.: $110.101_{2}==6.625_{10}$
- if we represent floating point numbers with a fixed small number of bits
- there are only a finite number of bit patterns
- can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exact representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes ... can be disasterous
- fixed-point is a simple trick to represent fractional numbers as integers
- every value is multiplied by a particular constant, e.g. 1000 and stored as integer
- so if constant is 1000 , could represent 56.125 as an integer (56125)
- but not 3.141592
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point
- major limitation is only small range of values can be represented
- for example with 32 bits, and using $65536\left(2^{16}\right)$ as constant
- 16 bits used for integer part
- 16 bits used for the fraction
- minimum $2_{-16} \approx 0.000015$
- maximum $2_{15} \approx 32768$

exponentional representation - a better approach

- you've met scientific notation, e.g 6.0221515 * $10^{\wedge} 23$ elsewhere -we can represent numbers in a similar way to scientific notation
- but using binary, e.g $1.0101011 * 2^{11_{2}}=1.3359375 * 8=10.6875$
- allows much bigger range of values than fixed point
- using only 8 bits for the exponent, we can represent numbers from 10^{-38}.. 10^{+38}
- using only 11 bits for the exponent, we can represent numbers from 10^{-308}.. 10^{+308}
- leads to numbers close to zero have higher precision (more accurate) which is good
- exponent notation allows multiple representations for a single value
- e.g $1.0101011 * 2^{11_{2}}==10.6875$ and $10.101011 * 2^{10_{2}}==10.6875$
- having multiple representations would make arithmetic slower on CPU
- want only one representation (one bit pattern) representing a value
- decision - use representation with exactly one digit in front of decimal point
- use $1.0101011 * 2^{11_{2}}$ not $10.101011 * 2^{10_{2}}$ or $1010.1011 * 2^{0_{2}}$
- this is called normalization
- weird hack: as we are using binary the first digit must be a one we don't need to represent it
- as we long we have a separate representation for zero

floating_types.c - print characteristics of floating point types

```
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX)
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX)
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_
source code for floating_types.c
$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
```


IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form sign fraction $* 2^{\text {exponent }}$, where sign is $+/$ -
- fraction always has 1 digit before decimal point (normalized)
- exponent is stored as positive number by adding constant value (bias)

Floating Point Numbers

Example of normalising the fraction part in binary:

- 1010.1011 is normalized as $1.0101011 * 2^{011}$
- $1010.1011=10+11 / 16=10.6875$
- $1.0101011 * 2^{011}=(1+43 / 128) * 2^{3}=1.3359375 * 8=10.6875$

The normalised fraction part always has 1 before the decimal point.
Example of determining the exponent in binary:

- if exponent is 8 -bits, then the bias $=2^{8-1}-1=127$
- valid bit patterns for exponent are 00000001 .. 11111110
- these correspond to exponent values of -126 .. 127

Floating Point Numbers

Internal structure of floating point values

Distribution of Floating Point Numbers

- floating point numbers not evenly distributed
- representations get further apart as values get bigger
- this works well for most calculations
- but can cause weird bugs
- double (IEEE 75464 bit) has 52-bit fractions so:
- between 2_{n} and 2_{n+1} there are 2_{52} doubles evenly spaced
- e.g. in the interval 2_{-42} and 2_{-43} there are 2_{52} doubles
- and in the interval between 1 and 2 there are 2_{52} doubles
- and in the interval between 242 and 243 there are 2_{52}
- so near 0.001 doubles are about 0.0000000000000000002 apart
- so near 1000 doubles are about 0.0000000000002 apart
- so near 1000000000000000 doubles are about 0.25 apart
- above 2_{53} doubles are more than 1 apart

IEEE-754 Single Precision example: $\mathbf{0 . 1 5 6 2 5}$

0.15625 is represented in IEEE-754 single-precision by these bits: 00111110001000000000000000000000

```
sign | exponent | fraction
    0 | 01111100 | 01000000000000000000000
sign bit = 0
sign = +
raw exponent = 01111100 binary
    = 124 decimal
actual exponent = 124 - exponent_bias
    = 124-127
    = -3
number = +1.01000000000000000000000 binary * 2**-3
    = 1.25 decimal * 2**-3
    = 1.25* 0. 125
    =0.15625
```

source code for explain_float_representation.c

IEEE-754 Single Precision example: -0.125

```
$ ./explain_float_representation -0.125
-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000
sign | exponent | fraction
    1 | 01111100 | 00000000000000000000000
sign bit = 1
sign = -
raw exponent = 01111100 binary
    = 124 decimal
actual exponent = 124 - exponent_bias
    = 124-127
    = -3
number = -1.00000000000000000000000 binary * 2**-3
    = -1 decimal * 2**-3
    = -1 * 0.125
    = -0.125
```


IEEE-754 Single Precision example: $\mathbf{1 5 0 . 7 5}$

```
$ ./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
sign | exponent | fraction
    0 | 10000110 | 00101101100000000000000
sign bit = 0
sign = +
raw exponent = 10000110 binary
    = 134 decimal
actual exponent = 134 - exponent_bias
    = 134-127
    = 7
number = +1.00101101100000000000000 binary * 2**7
    = 1.17773 decimal * 2**7
    = 1.17773 * 128
    = 150.75
```


IEEE-754 Single Precision example: -96.125

```
$ ./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000
sign | exponent | fraction
    1 | 10000101 | 10000000100000000000000
sign bit = 1
sign = -
raw exponent = 10000101 binary
    = 133 decimal
actual exponent = 133 - exponent_bias
    = 133 - 127
    = 6
number = -1.10000000100000000000000 binary * 2**6
    = -1.50195 decimal * 2**6
    = -1.50195 * 64
    = -96.125
```


IEEE-754 Single Precision exploring bit patterns \#1

```
$ ./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary
    = 123 decimal
actual exponent = 123 - exponent_bias
    = 123 - 127
    = -4
number = +1.10011001100110011001101 binary * 2**-4
    = 1.6 decimal * 2**-4
    = 1.6 * 0.0625
    = 0.1
```

- IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations
double $x=1.0 / 0.0 ;$
printf("\%lf\n", x) ; //prints inf
printf("\%lf\n", -x); //prints -inf
printf("\%lf\n", x - 1) ; // prints inf
printf("\%lf\n", 2 * atan(x)); // prints 3.141593
printf("\%d\n", $42<x) ; / /$ prints 1 (true)
printf("\%d\n", x == INFINITY); // prints 1 (true)
source code for infinity.c

nan. c: handling errors robustly

- C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagates sensibly through calculations

```
double x = 0.0/0.0;
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

source code for nan.c

```
$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
011111111000000000000000000000000
sign | exponent | fraction
    0 | 11111111 | 00000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
    = 255 decimal
number = +inf
```

raw exponent = 11111111 binary
= 255 decimal
number = NaN
source code for explain_float_representation.c

Consequences of most reals not having exact representations

```
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) { // better would be fabs(b) > 0.000001
    printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16
```

source code for double_imprecision.c

- do not use $==$ and $!=$ with floating point values
- instead check if values are close

Consequences of most reals not having exact representations

```
double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16
```

source code for double_catastrophe.c

Another reason not to use == with floating point values

```
if (d == d) {
    printf("d == d is true\n");
} else {
    // will be executed if d is a NaN
    printf("d == d is not true\n");
}
if (d == d + 1) {
    // may be executed if d is large
        // because closest possible representation for d + 1
        // is also closest possible representation for d
        printf("d == d + 1 is true\n");
} else {
    printf("d == d + 1 is false\n");
}
```


Another reason not to use $==$ with floating point values

```
$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$ ./double_not_always 4200000000000000000
d = 4.2e+18
d == d is true
d == d + 1 is true
$ ./double_not_always NaN
d = nan
d == d is not true
d == d + 1 is false
```

because closest possible representation for $d+1$ is also closest possible representation for d source code for double_ _ot talways.c

Consequences of most reals not having exact representations

```
// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

source code for double_disaster.c

- 9007199254740993 is $2^{53}+1$
it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a int32_t
it can be represented by int64_t

Exercise: Floating point \rightarrow Decimal

Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.
01000000011000000000000000000000

10111111010000000000000000000000

