COMP1521 22T3 — Floating-Point Numbers

https://www.cse.unsw.edu.au/~cs1521/22T3/
C has three floating point types

- **float** ... typically 32-bit (lower precision, narrower range)
- **double** ... typically 64-bit (higher precision, wider range)
- **long double** ... typically 128-bits (but maybe only 80 bits used)

Floating point constants, e.g: \(3.14159\ 1.0e-9\) are **double**

Reminder: division of 2 ints in C yields an int.

- but division of double and int in C yields a double.
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6

source code for float_output.c
if we represent floating point numbers with a fixed small number of bits
 - there are only a finite number of bit patterns
 - can only represent a finite subset of reals

almost all real values will have no exact representation

value of arithmetic operations may be real with no exact representation

we must use closest value which can be exactly represented

this approximation introduces an error into our calculations

often, does not matter

sometimes ... can be disastrous
Fixed Point Representation

- can have fractional numbers in other bases, e.g.: $110.101_2 = 6.625_{10}$
- could represent fractional numbers similarly to integers by assuming decimal point is in **fixed** position
- for example with 32 bits:
 - 16 bits could be used for integer part
 - 16 bits could be used for the fraction
 - equivalent to storing values as integers after multiplying (**scaling**) by 2^{16}
 - major limitation is only small range of values can be represented
 - minimum $2^{-16} \approx 0.000015$
 - maximum $2^{15} \approx 32768$
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point

https://www.cse.unsw.edu.au/~cs1521/22T3/
```c
float f;
double d;
long double l;

printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
```

Source code for `floating_types.c`

```
$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
```
IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form $\text{sign fraction} \times 2^{\text{exponent}}$, where sign is +/-
- fraction always has 1 digit before decimal point (normalized)
 - as a consequence only 1 representation for any value
 - e.g 0.0101 must be represented as 1.01×2^{-2} not 10.1×2^{-4}
- exponent is stored as positive number by adding constant value (bias)
- numbers close to zero have higher precision (more accurate)
Floating Point Numbers

Example of normalising the fraction part in binary:

- 1010.1011 is normalized as 1.0101011×2^{011}
- $1010.1011 = 10 + 11/16 = 10.6875$
- $1.0101011 \times 2^{011} = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875$

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- if exponent is 8-bits, then the bias = $2^{8-1} - 1 = 127$
- valid bit patterns for exponent are 00000001 .. 11111110
- these correspond to exponent values of -126 .. 127

https://www.cse.unsw.edu.au/~cs1521/22T3/
Floating Point Numbers

Internal structure of floating point values

Single Precision
- **Sign**: 1 bit
- **Exponent (exp)**: 8 bits
- **Fraction (fraction)**: 23 bits

Double Precision
- **Sign**: 1 bit
- **Exponent (exp)**: 11 bits
- **Fraction (fraction)**: 52 bits
IEEE-754 Single Precision example: 0.15625

0.15625 is represented in IEEE-754 single-precision by these bits:
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign | exponent | fraction
0 | 0 1 1 1 1 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign bit = 0

sign = +

raw exponent = 0 1 1 1 1 1 0 0 binary
 = 124 decimal

actual exponent = 124 - exponent_bias
 = 124 - 127
 = -3

number = +1.0 1 0 binary * 2**-3
 = 1.25 decimal * 2**-3
 = 1.25 * 0.125
 = 0.15625

source code for explain_float_representation.c
$./explain_float_representation -0.125

-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01111100</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent bias
= 124 - 127
= -3

number = -1.00000000000000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125
$./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
sign | exponent | fraction
 0 | 10000110 | 001011011000000000000000
sign bit = 0
sign = +
raw exponent = 10000110 binary
= 134 decimal
actual exponent = 134 - exponent_bias
= 134 - 127
= 7
number = +1.001011011000000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75
$./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
110000101100000001000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000101</td>
<td>100000001000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -

raw exponent = 10000101 binary
= 133 decimal

actual exponent = 133 - exponent_bias
= 133 - 127
= 6

number = -1.1000000010000000000000000 binary * 2**6
= -1.50195 decimal * 2**6
= -1.50195 * 64
= -96.125
$./explain_float_representation 00111101110011001100110011001101

sign bit = 0
sign = +
raw exponent = 01111011 binary
= 123 decimal
actual exponent = 123 - exponent_bias
= 123 - 127
= -4

number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1
IEEE 754 has a representation for +/- infinity
propagates sensibly through calculations

```c
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```
C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagates sensibly through calculations

double x = 0.0/0.0;
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)

source code for nan.c

https://www.cse.unsw.edu.au/~cs1521/22T3/COMP1521 22T3 — Floating-Point Numbers
$./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11111111</td>
<td>00000000000000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0
sign = +
raw exponent = 11111111 binary
= 255 decimal

number = +inf
$./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 1111111 binary
= 255 decimal
number = NaN
Consequences of most reals not having exact representations

```c
double a, b;

a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) {
  // better would be fabs(b) > 0.000001
  printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16
```

- do not use `==` and `!=` with floating point values
- instead check if values are close

https://www.cse.unsw.edu.au/~cs1521/22T3/COMP1521_22T3 — Floating-Point Numbers
Consequences of most reals not having exact representations

double x = 0.0000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16

source code for double_catastrophe.c

https://www.cse.unsw.edu.au/~cs1521/22T3/
Another reason not to use == with floating point values

```c
if (d == d) {
    printf("d == d is true\n");
} else {
    // will be executed if d is a NaN
    printf("d == d is not true\n");
}
if (d == d + 1) {
    // may be executed if d is large
    // because closest possible representation for d + 1
    // is also closest possible representation for d
    printf("d == d + 1 is true\n");
} else {
    printf("d == d + 1 is false\n");
}
```

source code for double_not_always.c

https://www.cse.unsw.edu.au/~cs1521/22T3/
Another reason not to use `==` with floating point values

```c
$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$ ./double_not_always 4200000000000000000
d = 4.2e+18
d == d is true
d == d + 1 is true
$ ./double_not_always NaN
d = nan
d == d is not true
d == d + 1 is false
```

because closest possible representation for `d + 1` is also closest possible representation for `d`

(source code for `double_not_always.c`)
Consequences of most reals not having exact representations

```c
// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

Source code for `double_disaster.c`

- 9007199254740993 is $2^{53} + 1$
 - it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a int32_t
 - it can be represented by int64_t

https://www.cse.unsw.edu.au/~cs1521/22T3/
Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000