Floating Point Numbers

C has three floating point types:

- **float** ... typically 32-bit (lower precision, narrower range)
- **double** ... typically 64-bit (higher precision, wider range)
- **long double** ... typically 128-bits (but maybe only 80 bits used)

Floating point constants, e.g.: 3.14159, 1.0e-9 are **double**

Reminder: division of 2 ints in C yields an int.

- but division of double and int in C yields a double.

Floating Point Number - Output

double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6
Floating Point Numbers

- If we represent floating point numbers with a fixed small number of bits
 - There are only a finite number of bit patterns
 - Can only represent a finite subset of reals
- Almost all real values will have no exact representation
- Value of arithmetic operations may be real with no exact representation
- We must use closest value which can be exactly represented
- This approximation introduces an error into our calculations
- Often, does not matter
- Sometimes ... can be disastrous

Fixed Point Representation

- Can have fractional numbers in other bases, e.g.: $110.101_2 = 6.625_{10}$
- Could represent fractional numbers similarly to integers by assuming decimal point is in fixed position
- For example with 32 bits:
 - 16 bits could be used for integer part
 - 16 bits could be used for the fraction
 - Equivalent to storing values as integers after multiplying (scaling) by 2^{16}
 - Major limitation is only small range of values can be represented
 - Minimum $2^{-16} \approx 0.000015$
 - Maximum $2^{15} \approx 32768$
- Usable for some problems, but not ideal
- Used on small embedded processors without silicon floating point

Floating Types

```c
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
```

$./floating_types$

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>4 bytes</td>
<td>$1.17549e-38$</td>
<td>$3.40282e+38$</td>
</tr>
<tr>
<td>double</td>
<td>8 bytes</td>
<td>$2.22507e-308$</td>
<td>$1.79769e+308$</td>
</tr>
<tr>
<td>long double</td>
<td>16 bytes</td>
<td>$3.3621e-4932$</td>
<td>$1.18973e+4932$</td>
</tr>
</tbody>
</table>
IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form $sign \cdot fraction \times 2^{exponent}$, where sign is +/-
- fraction always has 1 digit before decimal point (normalized)
 - as a consequence only 1 representation for any value
- exponent is stored as positive number by adding constant value (bias)
- numbers close to zero have higher precision (more accurate)

Floating Point Numbers

Example of normalising the fraction part in binary:
- 1010.1011 is normalized as 1.0101011×2^{011}
- $1010.1011 = 10 + 11/16 = 10.6875$
- $1.0101011 \times 2^{011} = (1 + 43/128) \times 2^{3} = 1.3359375 \times 8 = 10.6875$

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:
- if exponent is 8-bits, then the bias $= 2^{8-1} - 1 = 127$
- valid bit patterns for exponent 00000001 .. 11111110
- correspond to B exponent values -126 .. 127

Floating Point Numbers

Internal structure of floating point values
IEEE-754 Single Precision example: **0.15625**

0.15625 is represented in IEEE-754 single-precision by these bits:
```
00111110001000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01111100</td>
<td>01000000000000000000000</td>
</tr>
</tbody>
</table>

sign = 0

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= **0.15625**

source code for `./explain_float_representation`

```
0.15625
```

IEEE-754 Single Precision example: **-0.125**

$./explain_float_representation -0.125

-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
```
10111110000000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01111100</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1

sign = -

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= **-0.125**

source code for `./explain_float_representation`

```
-0.125
```

IEEE-754 Single Precision example: **150.75**

$./explain_float_representation 150.75

150.75 is represented in IEEE-754 single-precision by these bits:
```
01000011000101101100000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10001110</td>
<td>00101101100000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

sign = +

raw exponent = 10000110 binary
= 134 decimal

actual exponent = 134 - exponent_bias
= 134 - 127
= 7

number = +1.00101101100000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= **150.75**

source code for `./explain_float_representation`

```
150.75
```
IEEE-754 Single Precision example: -96.125

$./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000101</td>
<td>100000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

raw exponent = 01110111 binary
= 123 decimal

actual exponent = 123 - exponent_bias
= 123 - 127
= -4

number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1

IEEE-754 Single Precision exploring bit patterns #1

$./explain_float_representation 00111101110011001100110011001101

sign bit = 0

sign = +

raw exponent = 01110111 binary
= 123 decimal

actual exponent = 123 - exponent_bias
= 123 - 127
= -4

number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1

infinity.c: exploring infinity

- IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations

```c
double x = 1.0/0.0;
printf("%lf\n", x); // prints inf
printf("%lf\n", -x); // prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%ld\n", 42 < x); // prints 1 (true)
printf("%ld\n", x == INFINITY); // prints 1 (true)
```

source code for infinity.c
nan.c: handling errors robustly

- C (IEEE-754) has a representation for invalid results:
 - NaN (not a number)
 - ensures errors propagate sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x); // prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

IEEE-754 Single Precision example: inf

```
$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000
sign | exponent | fraction
  0 | 1111111 | 000000000000000000000000
sign bit = 0
sign = +
raw exponent = 1111111 binary
              = 255 decimal
number = +inf
```

IEEE-754 Single Precision exploring bit patterns #2

```
$ ./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 1111111 binary
              = 255 decimal
number = NaN
```
Consequences of most reals not having exact representations

```c
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);    
if (b != 0) { // better would be fabs(b) > 0.000001
    printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.1022e-16
```

- do not use == and != with floating point values
- instead check if values are close

Consequences of most reals not having exact representations

```c
double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.1022e-16
printf("%g\n", x * x); // prints 1.21e-16
```

Another reason not to use == with floating point values

```c
if (d == d) {
    printf("d == d is true\n");
} else {
    // will be executed if d is a NaN
    printf("d == d is not true\n");
}
if (d == d + 1) {
    // may be executed if d is large
    // because closest possible representation for d + 1
    // is also closest possible representation for d
    printf("d == d + 1 is true\n");
} else {
    printf("d == d + 1 is false\n");
}
```

Another reason not to use == with floating point values

```
$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
  d = 42.3
  d == d is true
  d == d + 1 is false
$ ./double_not_always 4200000000000000000
  d == d is true
  d == d + 1 is true

because closest possible representation for d + 1 is also closest possible representation for d
```