COMP1521 21T2 — Floating-Point Numbers

https://www.cse.unsw.edu.au/~cs1521/21T2/
Floating Point Numbers

- C has three floating point types
 - `float` ... typically 32-bit (lower precision, narrower range)
 - `double` ... typically 64-bit (higher precision, wider range)
 - `long double` ... typically 128-bits (but maybe only 80 bits used)

- Floating point constants, e.g: `3.14159` `1.0e-9` are `double`

- Reminder: division of 2 ints in C yields an int.
 - but division of double and int in C yields a double.
Floating Point Number - Output

double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6

source code for float_output.c

https://www.cse.unsw.edu.au/~cs1521/21T2/
Floating Point Numbers

- if we represent floating point numbers with a fixed small number of bits
 - there are only a finite number of bit patterns
 - can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exactly representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes ... can be disastrous
Fixed Point Representation

- can have fractional numbers in other bases, e.g.: $110.101_2 = 6.625_{10}$
- could represent fractional numbers similarly to integers by assuming decimal point is in \textit{fixed} position
- for example with 32 bits:
 - 16 bits could be used for integer part
 - 16 bits could be used for the fraction
 - equivalent to storing values as integers after multiplying (\textit{scaling}) by 2^{16}
 - major limitation is only small range of values can be represented
 - minimum $2_{-16} \approx 0.000015$
 - maximum $2_{15} \approx 32768$
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point

https://www.cse.unsw.edu.au/~cs1521/21T2/
floating_types.c - print characteristics of floating point types

```c
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g \n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g \n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg \n", sizeof l, LDBL_MIN, LDBL_MAX);
```

source code for floating_types.c

```bash
$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
```

https://www.cse.unsw.edu.au/~cs1521/21T2/
IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)

- IEEE 754 representation has 3 parts: **sign**, **fraction** and **exponent**
- numbers have form $\text{sign} \times \text{fraction} \times 2^{\text{exponent}}$, where **sign** is +/-
- **fraction** always has 1 digit before decimal point (**normalized**)
 - as a consequence only 1 representation for any value
- **exponent** is stored as positive number by adding constant value (**bias**)
- numbers close to zero have higher precision (more accurate)
Floating Point Numbers

Example of normalising the fraction part in binary:

- 1010.1011 is normalized as 1.0101011×2^{011}
- $1010.1011 = 10 + 11/16 = 10.6875$
- $1.0101011 \times 2^{011} = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875$

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- if exponent is 8-bits, then the bias = $2^{8-1} - 1 = 127$
- valid bit patterns for exponent 00000001 .. 11111110
- correspond to B exponent values -126 .. 127
Floating Point Numbers

Internal structure of floating point values

single precision

- 32 bits in total
- 1 bit for sign
- 8 bits for exponent
- 23 bits for fraction

double precision

- 64 bits in total
- 1 bit for sign
- 11 bits for exponent
- 52 bits for fraction
IEEE-754 Single Precision example: 0.15625

0.15625 is represented in IEEE-754 single-precision by these bits:
00111110001000000000000000000000

sign | exponent | fraction
0 | 01111100 | 01000000000000000000000

sign bit = 0
sign = +
raw exponent = 01111100 binary
= 124 decimal
actual exponent = 124 - exponent_bias
= 124 - 127
= -3
number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

source code for explain_float_representation.c
IEEE-754 Single Precision example: \textbf{-0.125}

$./explain_float_representation -0.125$

-0.125 is represented as a float (IEEE-754 single-precision) by these bits:

\begin{verbatim}
10111110000000000000000000000000
\end{verbatim}

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01111100</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1

sign = -

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = -1.00000000000000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125
$./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000110</td>
<td>00101101100000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0
sign = +

raw exponent = 10000110 binary
 = 134 decimal

actual exponent = 134 - exponent_bias
 = 134 - 127
 = 7

number = +1.001011011000000000000000 binary * 2**7
 = 1.17773 decimal * 2**7
 = 1.17773 * 128
 = 150.75
$./explanation_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
110000101100000001000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000101</td>
<td>10000000100000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -
raw exponent = 10000101 binary
= 133 decimal
actual exponent = 133 - exponent_bias
= 133 - 127
= 6
number = \(-1.1000000010000000000000000000000\) binary \(*\ 2^{6}
= -1.50195 \) decimal \(*\ 2^{6}
= -1.50195 \times 64
= -96.125
$./explain_float_representation 0011101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary
= 123 decimal
actual exponent = 123 - exponent_bias
= 123 - 127
= -4
number = +1.10011001100110011001101 binary \times 2^{-4}
= 1.6 \text{ decimal} \times 2^{-4}
= 1.6 \times 0.0625
= 0.1
IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations

```c
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```

source code for infinity.c
C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagates sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x); // prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

source code for nan.c
IEEE-754 Single Precision example: inf

$./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1111111</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0
sign = +
raw exponent = 11111111 binary
 = 255 decimal

number = +inf
$./explain_float_representation 01111111110000000000000000000000

sign bit = 0
sign = +
raw exponent = 11111111 binary
= 255 decimal

number = NaN

data source for explain_float_representation.c
Consequences of most reals not having exact representations

```c
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) {
    // better would be fabs(b) > 0.000001
    printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16
```

- do not use `==` and `!=` with floating point values
- instead check if values are close

https://www.cse.unsw.edu.au/~cs1521/21T2/ COMP1521 21T2 — Floating-Point Numbers
Consequences of most reals not having exact representations

```c
double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x));  // prints 1.11022e-16
printf("%g\n", x * x);  // prints 1.21e-16
```

source code for double_catastrophe.c

https://www.cse.unsw.edu.au/~cs1521/21T2/
Another reason not to use == with floating point values

```c
if (d == d) {
    printf("d == d is true\n");
} else {
    // will be executed if d is a NaN
    printf("d == d is not true\n");
}
if (d == d + 1) {
    // may be executed if d is large
    // because closest possible representation for d + 1
    // is also closest possible representation for d
    printf("d == d + 1 is true\n");
} else {
    printf("d == d + 1 is false\n");
}
```

source code for double_not_always.c

https://www.cse.unsw.edu.au/~cs1521/21T2/COMP1521 21T2 — Floating-Point Numbers
Another reason not to use == with floating point values

$ dcc double_not_always.c -o double_not_always
$./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$./double_not_always 4200000000000000000
 d = 4.2e+18
d == d is true
d == d + 1 is true
$./double_not_always NaN
d = nan
d == d is not true
d == d + 1 is false

because closest possible representation for d + 1 is also closest possible representation for d

source code for double_not_always.c
Consequences of most reals not having exact representations

```c
double d = 9007199254740992;
// loop never terminates
while (d < 9007199254740999) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

- 9007199254740993 is $2^{53} + 1$
 - it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a `int32_t`
 - it can be represented by `int64_t`

Source code for `double_disaster.c`
Convert the following floating point numbers to decimal.

Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000