Floating Point Numbers

- C has three floating point types
 - `float` ... typically 32-bit (lower precision, narrower range)
 - `double` ... typically 64-bit (higher precision, wider range)
 - `long double` ... typically 128-bit (but maybe only 80 bits used)

- Floating point constants, e.g.: `3.14159` `1.0e-9` are `double`

- Reminder: division of 2 ints in C yields an int.
 - but division of double and int in C yields a double.

Floating Point Number - Output

```c
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%.1lf\n", d); // prints 0.6
```

source code for float_output.c
Floating Point Numbers

- if we represent floating point numbers with a fixed small number of bits
 - there are only a finite number of bit patterns
 - can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exactly representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes … can be disastrous

Fixed Point Representation

- can have fractional numbers in other bases, e.g.: 110.101₂ = 6.625₁₀
- could represent fractional numbers similarly to integers by assuming decimal point is in fixed position
- for example with 32 bits:
 - 16 bits could be used for integer part
 - 16 bits could be used for the fraction
 - equivalent to storing values as integers after multiplying (scaling) by 2^{16}
 - major limitation is only small range of values can be represented
 - minimum $2^{-16} \approx 0.000015$
 - maximum $2^{15} \approx 32768$
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point

floating_types.c - print characteristics of floating point types

```c
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
```

```
$ ./floating_types
float  4 bytes min=1.17549e-38  max=3.40282e+38
double 8 bytes min=2.22507e-308  max=1.79769e+308
long double 16 bytes min=3.3621e-4932  max=1.18973e+4932
```
IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form $sign \times fraction \times 2^{exponent}$, where $sign$ is $+$/-
- fraction always has 1 digit before decimal point (normalized)
 - as a consequence only 1 representation for any value
- exponent is stored as positive number by adding constant value (bias)
- numbers close to zero have higher precision (more accurate)

Floating Point Numbers

Example of normalising the fraction part in binary:
- 1010.1011 is normalized as 1.0101011×2^{011}
- $1010.1011 = 10 + 11/16 = 10.6875$
- $1.0101011 \times 2^{011} = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875$

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:
- if exponent is 8-bits, then the bias = $2^8 - 1 = 127$
- valid bit patterns for exponent 00000001..11111110
- correspond to B exponent values -126 .. 127

Floating Point Numbers

Internal structure of floating point values

```
   31 30 23 22 0
   exp   fraction
   8 bits   23 bits
```

single precision

```
   63 62 52 51 0
   exp   fraction
   11 bits    52 bits
```

double precision
IEEE-754 Single Precision example: **0.15625**

0.15625 is represented in IEEE-754 single-precision by these bits:

```
00111110001000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0111100</td>
<td>01000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

sign = +

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

source code for explain_float_representation.c

IEEE-754 Single Precision example: **-0.125**

```
$ ./explain_float_representation -0.125
-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0111100</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1

sign = -

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125

IEEE-754 Single Precision example: **150.75**

```
$ ./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000110</td>
<td>00101101110000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

sign = +

raw exponent = 1000110 binary
= 134 decimal

actual exponent = 134 - exponent_bias
= 134 - 127
= 7

number = +1.00101101110000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75
IEEE-754 Single Precision example: -96.125

$./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000101</td>
<td>10000000100000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -
raw exponent = 10000101 binary
 = 133 decimal
actual exponent = 133 - exponent_bias
 = 133 - 127
 = 6
number = -1.10000000100000000000000 binary * 2**6
 = -1.50195 decimal * 2**6
 = -1.50195 * 64
 = -96.125

infinity.c: exploring infinity

IEEE 754 has a representation for +/- infinity
propagates sensibly through calculations

```c
double x = 1.0/0.0;
printf("%lf\n", x); // prints inf
printf("%lf\n", -x); // prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```

source code for infinity.c
C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- Ensures errors propagate sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x);  // prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x);   // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

IEEE-754 Single Precision example: `inf`

```
$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111000000000000000000000000
sign | exponent | fraction
0 | 11111111 | 000000000000000000000000
sign bit = 0
sign = +
raw exponent = 1111111 binary
= 255 decimal
number = +inf
```

IEEE-754 Single Precision exploring bit patterns #2

```
$ ./explain_float_representation 01111111100000000000000000000000
sign bit = 0
sign = +
raw exponent = 1111111 binary
= 255 decimal
number = NaN
```

Source code for `nan.c`
https://www.cse.unsw.edu.au/~cs1521/21T2/
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + ... check if values are close
https://www.cse.unsw.edu.au/~cs1521/21T2/ COMP1521 21T2 — Floating-Point Numbers 19 / 24

Consequences of most reals not having exact representations
double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16
source code for double_catastrophe.c

Another reason not to use == with floating point values
if (d == d) {
printf("d == d is true\n");
} else {
// will be executed if d is a NaN
printf("d == d is not true\n");
}
if (d == d + 1) {
// may be executed if d is large
// because closest possible representation for d + 1
// is also closest possible representation for d
printf("d == d + 1 is true\n");
} else {
printf("d == d + 1 is false\n");
}
source code for double_not_always.c
Another reason not to use == with floating point values

$ dcc double_not_always.c -o double_not_always
$./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$./double_not_always 4200000000000000000

d = 4.2e+18
d == d is true
d == d + 1 is true
$./double_not_always NaN

d = nan
d == d is not true
d == d + 1 is false

because closest possible representation for d + 1 is also closest possible representation for d

Consequences of most reals not having exact representations

```c
double d = 9007199254740992;
// loop never terminates
while (d < 9007199254740999) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

- 9007199254740993 is $2^{53} + 1$
 it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a int32_t
 it can be represented by int64_t

Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000
1 01111110 10000000000000000000000