Character Data

A huge number of character representations (encodings) exist — but you need to know only two:

- **ASCII (ISO 646)**
 - 7-bit values, using lower 7-bits of a byte (top bit always zero)
 - can encode Roman alphabet, digits, punctuation, control chars
- **UTF-8 (Unicode)**
 - 8-bit values, with ability to extend to multi-byte values
 - can encode all human languages plus other symbols, e.g.:
 \(\sqrt{\sum \forall \exists} \)

ASCII Character Encoding

- Uses values in the range 0x00 to 0x7F (0..127)
- Characters partitioned into sequential groups
 - control characters (0..31) e.g. \`
 \`
 - punctuation chars (32..47, 91..96, 123..126)
 - digits (48..57) e.g. 0..9
 - upper case alphabetic (65..90) e.g. A..Z
 - lower case alphabetic (97..122) e.g. a..z
- Sequential nature of groups allow ordination e.g. 3 - 0 == 3 J - A == 10
- See man 7 ascii

Unicode

Widely-used standard for expressing “writing systems”
- not all writing systems use a small set of discrete symbols
Basicall, a 32-bit representation of a wide range of symbols
- around 140K symbols, covering 140 different languages
Using 32-bits for every symbol would be too expensive
- e.g. standard roman alphabet + punctuation needs only 7-bits
- Several encodings have been developed (e.g. UTF-8)

UTF-8 Character Encoding

UTF-8 uses a variable-length encoding:

<table>
<thead>
<tr>
<th>#bytes</th>
<th>#bits</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0xxxxxxx</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>110xxxxx</td>
<td>10xxxxxxx</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>1110xxxx</td>
<td>10xxxxxxx</td>
<td>10xxxxxxx</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>11110xxx</td>
<td>10xxxxxxx</td>
<td>10xxxxxxx</td>
<td>10xxxxxxx</td>
</tr>
</tbody>
</table>

- The 127 1-byte codes are compatible with ASCII
- The 2048 2-byte codes include most Latin-script alphabets
- The 65536 3-byte codes include most Asian languages
- The 2097152 4-byte codes include symbols and emojis and ...

Examples:

<table>
<thead>
<tr>
<th>ch</th>
<th>unicode</th>
<th>binary</th>
<th>UTF-8 encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>U+0024</td>
<td>0100100</td>
<td>00100100</td>
</tr>
<tr>
<td>U</td>
<td>U+00A2</td>
<td>00010100</td>
<td>11000010 10100010</td>
</tr>
<tr>
<td>A</td>
<td>U+00A2</td>
<td>0001000010101000</td>
<td>11100010 10000010 10101100</td>
</tr>
</tbody>
</table>
UTF-8 Properties

- Compact, but not minimal encoding; encoding allows you to resync immediately if bytes lost from a stream.
- ASCII is a subset of UTF-8 - complete backwards compatibility!
- All other UTF-8 bytes > 127 (0x7f).
- No byte of multi-byte UTF-8 encoding is 0 — can still use null-terminated strings.
- No byte of multi-byte UTF-8 encoding is valid ASCII.
- 0x2F (ASCII /) can not appear in multi-byte character — hence can use UTF-8 for Linux/Unix filename.
- C programs can treat UTF-8 similarly to ASCII.
- Beware: number of bytes in UTF-8 string != number of characters.