Floating Point Numbers

Floating point numbers model a (tiny finite) subset of reals;

• almost all real values don’t have exact representation (e.g. 1/3)
• numbers close to zero have higher precision (more accurate)

C has two floating point types

• float ... typically 32-bit quantity (lower precision, narrower range)
• double ... typically 64-bit quantity (higher precision, wider range)

Literal floating point values: 3.14159, 1.0/3, 1.0e-9

```c
printf("%10.4lf", (double)2.718281828459);
// displays 2.7183
printf("%20.20lf", (double)4.0/7);
// displays 0.57142857142857139685
```
IEEE 754 standard ...

- scientific notation with fraction F and exponent E
- numbers have form $F \times 2^E$, where both F and E can be -ve
- INFINITY = representation for ∞ and $-\infty$ (e.g. 1.0/0)
- NAN = representation for invalid value (e.g. sqrt(-1.0))

Fraction part is normalised (i.e. 1.2345×10^2 rather than 123.45)

In binary, exponent is represented relative to a bias value B

- if the unsigned exponent value is e, the actual value is $e - B$
Floating Point Numbers

Example of normalising the fraction part in binary:

- 1010.1011 is normalized as 1.0101011×2^{011}
- $1010.1011 = 10 + 11/16 = 10.6875$
- $1.0101011 \times 2^{011} = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875$

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- assume an 8-bit exponent, then bias $B = 2^{8-1} - 1 = 127$
- valid bit patterns for exponent $00000001 \ldots 11111110$
- exponent values $-126 \ldots 127$
Floating Point Numbers

Internal structure of floating point values

More complex representation than int because 1.0d ddddde
Floating Point Numbers

Example (single-precision):

150.75 = 10010110.11
// normalise fraction, compute exponent
= 1.001011011 * 2 ** 7
// determine sign bit,
// map fraction to 24 bits,
// map exponent relative to baseline
= 0 100000110 001011011 0000000000000000

where red is sign bit, green is exponent, blue is fraction

Note: $B=127$, $e = 2^7$, so exponent \(= 134 = 10000110 \)
Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal. Assume that they are in IEEE 754 single-precision format.

0 1000000 11000000000000000000000
1 0111110 10000000000000000000000