
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 4
Loop the loop

LA
ST

 L
EC

TU
RE

..
.

ON MONDAY

Basic IF statements

Conditionals - running our code based

on some sort of condition being met

More complex IF statements

Catching scanf errors with IF

statements

While loops

Conditional

IN
 T

H
IS

 L
EC

TU
RE

TODAY...

Refresh

While loops

A loop inside a loop

Custom data types:

Structs

Enums

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/26T1/LIVE/WEEK02/

WHERE IS THE CODE?

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

REFRESHER
IFS AND LOOPS
OH MY!

Tea or coffee?

Keep drinking tea until you ask for coffee

C normally executes in order, line by line

(starting with the main function after any #

commands have been executed)

if statements allow us to “turn on or off”

parts of our code

But up until now, we don’t have a way to

repeat code

Copy-pasting the same code again and again is

not a feasible solution

Let's see an example where it is inefficient to

copy and paste code...

WHILE

REPETITIVE TASKS
SHOULDN’T
REQUIRE
REPETITIVE
CODING

 loops - can commonly be controlled

in three ways:

Count loops

Sentinel loops

Conditional loops

WHILE

WHILE
SOMETHING IS
TRUE, DO
SOMETHING

while()

WHILE

CONTROL THE
WHILE LOOP

TO
INFINITY
AND
BEYOND

TERMINATING
YOUR LOOP

It’s actually very easy to make a program that

goes forever

Consider the following while loop:

CONTROL
THE WHILE
LOOP

COUNT LOOPS

Use a variable to control how many times a

loop runs - a "loop counter"

It’s an that’s declared outside the loop

It’s “termination condition” can be checked in

the while expression

It will be updated inside the loop

int

CONTROL
THE WHILE
LOOP

COUNT LOOPS

SENTINEL
VALUES

WHAT IS A
SENTINEL?

When we use a loop counter, we assume that

we know how many times we need to repeat

something

Consider a situation where you don’t know the

number of repetitions required, but you need

to repeat whilst there is valid data

A sentinel value is a ‘flag value’, it tells the loop

when it can stop…

For example, keep scanning in numbers until an

odd number is encountered

We do not know how many numbers we will

have to scan before this happens

We know that we can stop when we see an

odd number

CONTROL
THE WHILE
LOOP

SENTINEL LOOPS

Sentinel Loops: can also use a variable to

decide to exit a loop at any time

We call this variable a "sentinel"

It's like an on/off switch for the loop

It is declared and set outside the loop

It’s “termination condition” can be checked in

the while expression

It will be updated inside the loop (often

attached to a decision statement)

CONTROL
THE WHILE
LOOP

SENTINEL LOOPS

CONTROL
THE WHILE
LOOP

CONDITIONAL
LOOPS

Conditional Loops: can also use a condition to

decide to exit a loop at any time

This is called conditional looping

Also do not know how many times we may

need to repeat.

We will terminate as a result of some type of

calculation

CONTROL
THE WHILE
LOOP

COUNT LOOPS

ACTION
TIME

CODE DEMO

While loop with a counter:

While loop with a sentinel:

While loop with a condition:

while_count.c

while_sentinel.c

while_condition.c

WHILE
INSIDE A
WHILE

PUTTING A LOOP
INSIDE A LOOP

If we put a loop inside a loop . . .

Each time a loop runs

It runs the other loop

The inside loop ends up running a LOT of times

PROBLEM
TIME

PRINT OUT A GRID
OF NUMBERS

Print out a grid of numbers:

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

 1 2 3 4 5

Break down the problem…

Get it down to a component that you can do…

PROBLEM
TIME

PRINT OUT A GRID
OF NUMBERS

Think of the grid not as numbers, but as 5 rows

of bricks. To build it:

You must lay 5 bricks side-by-side to finish a

row.

You must finish a row before you can start

the next one below it.

So we would start at Row 1.

Lay brick 1, then 2, then 3, then 4, then 5.

Now that you've hit 5, you have to physically

move your body back to the start and up one

level.

Repeat: Go to Row 2 and do the exact same

thing. Repeat until you have finished 5 rows.

PROBLEM
TIME

PRINT OUT A
PYRAMID OF
NUMBERS

What if we now print out a half pyramid of

numbers:

 1

 1 2

 1 2 3

 1 2 3 4

 1 2 3 4 5

Break down the problem…

Get it down to a component that you can do…

ACTION
TIME

CODE DEMO

While loop print a grid:

While loop print a pyramid:

grid.c

pyramid.c

ORGANISING
DIFFERENT
TYPES INTO
ONE
RELATED
WHOLE
USER DEFINED DATA
TYPE

Structures…. Or (as they are known in

C!)

Structs (short for structures) are a way to create

custom variables

Structs are variables that are made up of other

variables

struct

struct

STRUCTURES
WHAT? WHY?
EXAMPLES?

What happens if you wanted to group some

variables together to make a single structure?

Why do we need structures?

Helps us to organise related but different

components into one structure

Useful in defining real life problems

What are some examples in real life where some

things go together to make a single component?

HOW DO WE
CREATE A
STRUCT?

To create a struct, there are three steps:

1.Define the struct (outside the main)

2.Declare the struct (inside your main)

3. Initialise the struct (inside your main)

1. DEFINING
A STRUCT

WHAT AM I
GROUPING
TOGETHER INTO ONE
WHOLE? LET'S USE
AN EXAMPLE OF A
COORDINATE POINT

Because structures are a variable that we have

created, made up of components that we decided

belong together, we need to define what the struct

(or structure is). To define a struct, we define it

before our main function and use some special syntax.

1. DEFINING
A STRUCT

WHAT AM I
GROUPING
TOGETHER INTO ONE
WHOLE? LET'S USE
AN EXAMPLE OF A
COORDINATE POINT

For example, using the coordinate point example, to

make a structure called coordinate, that has two

members - the x_coordinate and the y_coordinate:

To declare a struct, inside the main function (or

wherever you are using the structure - more on this

later)…

For example, using the coordinate point example, to

declare a variable, cood_point, of type struct

coordinate

2. DECLARING
A STRUCT

INSIDE YOUR MAIN

3.INITIALISE
A STRUCT

INSIDE YOUR MAIN We access a member by using the dot operator .

For example, using the coordinate point example, with

variable name: cood_point, trying to access the x

coordinate:

LET'S SEE IT
ALL
TOGETHER
FOR A
COORDINATE
POINT

1. DEFINE
2. DECLARE
3. INITIALISE

2. DECLARE

Inside the main

function

3. INITIALISE

Inside the main

function

1. DEFINE

Inside the main

function

ENUMERATIO
NS

USER DEFINED DATA
TYPE

Integer data types that you create with a limited

range of values (enumerated constants)

Used to assign names to integral constants

the names make the program easier to read

and maintain
enum

ENUMERATIO
NS

USER DEFINED DATA
TYPE enum

ENUMERATIO
NS

FOR EXAMPLE USING
MENU ITEMS,
IMAGINE IF AN ICE
CREAM SHOP HAD 57
FLAVOURS!

WHY
ENUMS?

The advantages of using enums over #defines:

Enumerations follow scope rules:

You cannot have an enum state that is

the same in two different types of

enums

Enumerations are automatically assigned

values, which makes the code easier to read

Think of the case where you have a large

number of constants (error codes for

example!?)

We use enums when we want a variable to

have a specific set of values

enum vs #define

while_counter.c

LOOP THE
LOOP
WHILE

(COUNTER)

while_sentinel.c

LOOP THE
LOOP
WHILE

(SENTINEL)

while_condition.c

LOOP THE
LOOP
WHILE

(CONDITION)

grid: grid.c

pyramid: pyramid.c

LOOP INSIDE A
LOOP (CAN'T
GET ENOUGH
OF A LOOP)

WHAT DID WE LEARN TODAY?

struct.c

STRUCTURES

enum.c

ENUMERATIONS

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

