COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 4

Loop the loop

ON MONDAY

e Basic |IF statements
e Conditionals - running our code based

on some sort of condition being met

e More complex |IF statements

e Catching scanf errors with IF

statements

e While loops

LAST LECTURE...

o Conditional

TODAY...

e Refresh

e While loops
e A loop inside a loop
e Custom data types:

o Structs

IN THIS LECTURE

o Enums

WHERE IS THE CODE?

Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/26T1/LIVE/WEEKO02/

https://cgi.cse.unsw.edu.au/~cs1511/21T3/live/

REFRESHER

IFS AND LOOPS
OH MY!

e Tea or coffee?

e Keep drinking tea until you ask for coffee

WH I L E e C normally executes in order, line by line

(starting with the main function after any #

commands have been executed)

REPETITIVE TASKS o if statements allow us to “turn on or off”

SHOULDN’T parts of our code
REQUIRE o But up until now, we dont have a way to

REPETITIVE repeat code
CODING e Copy-pasting the same code again and again is

not a feasible solution
o Let's see an example where it is inefficient to

copy and paste code...

WH I L E e while() loops - can commonly be controlled

in three ways:

o Count loops

WHILE o Sentinel loops

SOMETHING IS o Conditional loops

TRUE, DO

SOMETHING
1 while (expression) {
2 // This will run again and again unttil
5] // the expression i1s evaluated as false
4 }

5 // when the program reaches this }, i1t will
6 // jump back to the start of the while loop

WHILE

1// 1. Inittialise the loop control variable
2 // before the loop starts

CONTROL THE 3

WHILE LOOP 4 while (expression) { // 2. Test the loop
5 // control vartiable,
6 // done within the
/ // (expression)
8
9 // 3. Update the loop control variable
10 // usually done as the last statement
11 // 1n the while loop

To e |t5 actually very easy to make a program that
goes forever

I N FI N ITY e Consider the following while loop:

AND S
1 // To infinity and beyond!

BEYOND ;

3 while (1 < 2) {
4 printf("<3 COMP1511 <3");

TERMINATING 5}
YOUR LOOP

e Use a variable to control how many times a
CONTROL e o variatle ,,
p runs - a "loop counter

TH E WH I L E e Its an 1nt thats declared outside the loop

e |t5 “termination condition” can be checked in
LOO P the while expression

o |t will be updated inside the loop

COUNT LOOPS 1 // 1. Declare and initialise a loop control
2 // varitable just outside the loop
3 int count = 0;
4
5 while (count < 5) { // 2. Test the loop
6 // control variable
7/ // against counter
8 printf("I <3 COMP1511");
9
10 //Update the loop control vartiable
11 count = count + 1;

12 }

CONTROL [N
2 int sum = 0;

3
THE WHILE 4 // 1. Declare and inittalise a loop control

5 // variable just outside the loop
LOOP 6 int serves = 0;

.

8 while (serves < 5) { // 2. Test the loop

9 // control variable

10 // against counter
COUNT LOOPS 11 printf("How many scoops of ice cream have

12 you had?");

13 scan("%d", &scoops);

14 sum = sum + SCOO0pS;

15 printf("You have now had %d serves\n", serves);

16 printf("A total of %d scoops\n", sum);

17 serves = serves + 1; // 3. Update the loop

18 // control vartiable

19 }

20 printf("That ts probably enough ice-cream\n");

s E NTI N E L e When we use a loop counter, we assume that

we know how many times we need to repeat
VAL U ES something

e Consider a situation where you dont know the

number of repetitions required, but you need

WHAT IS A
SENTINEL?

to repeat whilst there is valid data

e A sentinel value is a ‘flag value, it tells the loop
when it can stop...

e For example, keep scanning in numbers until an

odd number is encountered

o We do not know how many numbers we will
have to scan before this happens

o We know that we can stop when we see an

odd number

CO NTRO L e Sentinel Loops: can also use a variable to

decide to exit a loop at any time

TH E WH I L E e We call this variable a "sentinel”
LOOP e It's like an on/off switch for the loop

e |t is declared and set outside the loop

e |t5 “termination condition” can be checked in

SENTINEL LOOPS the while expression

e It will be updated inside the loop (often
attached to a decision statement)

CONTROL [y

2 int sum = 0;

THE WHILE 3

4 // 1. Declare and initialise a loop control

LOOP 5 // variable just outside the loop
6 int end_loop = 0;

y
8 while (end_loop == 0) { // 2. Test the loop
9 // control variable
SENT'NEL LOOPS 10 printf("Please enter number of scoops today: ");
11 scan("%sd", &scoops);
12 if (scoops > 0) {
13 Ssum = sum + SCOO0pS;
14 } else {
15 end_loop = 1; // 3. Update the loop
16 // control variable
17 }

18 }

CONTROL e Conditional Loops: can also use a condition to

decide to exit a loop at any time

TH E WH I L E e This is called conditional looping
LOO P e Also do not know how many times we may

need to repeat.

e We will terminate as a result of some type of

CONDITIONAL calculation
LOOPS

CONTROL B
THE WHILE [

3// 1. Declare and initialise a loop control vartiable

4 // Since I want the sum to be as close to 100
LOOP 5 // as possible, that is my control condition

6 int sum = 0;

.

8 while (sum < 100) { // 2. Test the Lloop

0 // condition
COUNT LOOPS 10 printf("Please enter number of scoops: ");

11 scan("%d", &scoops);

12

13 // 3. Update the loop control vartiable
14 sum = sum + SCOO0pS;

15 }

16 printf("Yay! You have eaten %d scoops of ice cream", sum);

ACTION
TIME

CODE DEMO

e While loop with a counter:
while count.c

e While loop with a sentinel:

while sentinel.c

e While loop with a condition:

while condition.c

WHILE
INSIDE A
WHILE

PUTTING A LOOP
INSIDE A LOOP

e [f we put a loop inside a loop . ..
e Fach time a loop runs

e |t runs the other loop

e The inside loop ends up running a LOT of times

e Print out a grid of numbers:

PROBLEM
TIME

12345
12345
PRINT OUT A GRID 1934
OF NUMBERS o ane

e Break down the problem...
e Get it down to a component that you can do...

e Think of the grid not as numbers, but as 5 rows
PROBLEM of bricks. To build it:
TIME o You must lay 5 bricks side-by-side to finish a

rTOW.

o You must finish a row before you can start

PRINT OUT A GRID
OF NUMBERS

the next one below it.
e 50 we would start at Row 1.
e Lay brick 1, then 2, then 3, then 4, then 5.
e Now that you've hit 5, you have to physically
move your body back to the start and up one

evel.

e Repeat: Go to Row 2 and do the exact same

thing. Repeat until you have finished 5 rows.

PROBLEM
TIME

PRINT OUT A
PYRAMID OF
NUMBERS

e What if we now print out a half pyramid of
numbers:

1

12
123
1234
12345

e Break down the problem...

e Get it down to a component that you can do..

ACTION e While loop print a grid:
TIME grid.c

e While loop print a pyramid:

pyramid.c

CODE DEMO

ORGAN ISI NG e Structures... Or struct (as they are known in
DIFFERENT "

e Structs (short for structures) are a way to create

TYPES INTO custom variables

ON E e Structs are variables that are made up of other

variables

RELATED
WHOLE

USER DEFINED DATA
TYPE struct

ST RU CTU RES e What happens if you wanted to group some

variables together to make a single structure?
WHAT? WHY? e Why do we need structures?
EXAMPLES? o Helps us to organise related but different
components into one structure
o Useful in defining real life problems
e What are some examples in real life where some

things go together to make a single component?

HOW DO WE To create a struct, there are three steps:
CREATE A 1.Define the struct (outside the main)

2.Declare the struct (inside your main)

ST RU CT? 3.Initialise the struct (inside your main)

1. DEFINING
A STRUCT

WHAT AM |
GROUPING
TOGETHER INTO ONE
WHOLE? LET'S USE
AN EXAMPLE OF A
COORDINATE POINT

Because structures are a variable that we have
created, made up of components that we decided
belong together, we need to define what the struct
(or structure is). To define a struct, we define it

before our main function and use some special syntax.

1 struct struct name {

2 data_type variable_name_member;
3 data_type vartiable_name_member;
4
5

s

1. DE FI N I NG For example, using the coordinate point example, to
A STRUCT

make a structure called coordinate, that has two

members - the x_coordinate and the y_coordinate:

WHAT AM | 1 struc’F coordinatg {

GROUPING 2 _1nt x_coord.mate;
d .

TOGETHER INTO ONE AL S

WHOLE? LET'S USE
AN EXAMPLE OF A
COORDINATE POINT

2. DECLARING
A STRUCT

INSIDE YOUR MAIN

To declare a struct, inside the main function (or
wherever you are using the structure - more on this

later)..

1 struct struct_name vartiable_name;

For example, using the coordinate point example, to
declare a variable, cood_point, of type struct
coordinate

1 struct coordinate cood_point;

3’INITIALISE 1 struct coordinate {
2 Lnt dinate;
4 };
INSIDE YOUR MAIN We access a member by using thé dot operator .
1 vartiable_name.variable_name_member;

For example, using the coordinate point example, with
variable name: cood_point, trying to access the x

coordinate:

1 cood_point.x_coordinate;

LET'S SE E IT 1‘ DEFINE 1 // Define a structure for a coordinate point

2
3 struct coordinate {

ALL Inside the main ;‘ IEE ;:222:312:’;
TOGETHER function i

FOR A 2. DECLARE. |
Coo RDI NATE le// Declare structure with variable name

|n5ide the main 3 struct coordinate cood_point;

POINT function

3. INITIALISE

1. DEFINE
2. DECLARE Inside '['_he main ;// Access stuct member to assign value

3 cood_point.x_coordinate
fUnCtion 4 cood_point.y_coordinate

Bj
Sifs

3.INITIALISE

E N UME RATIO e |[nteger data types that you create with a limited

NS -ange of values (enumerated constants)

e Used to assign names to integral constants

o the names make the program easier to read

USER DEFINED DATA and maintain
TYPE enum |

1 // Enumerations in C using the keyword enum

2 // For example, to define an enum you use

3 // the following syntax:

4

5 enum enum_name {STATEO, STATE1l, STATE2, ...};

6

/ // Eg. Define an enum with days of the week

8 enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};
9

10 // Eg. Using a flag to assign values (force something
11 // other than starting at 0)

12 enum state_flag {SUCCESS = 1, FAILURE = 2};

ENUMERATIO
NS

USER DEFINED DATA
TYPE enum

1 // Enumerations in C using the keyword enum

2 // A simple program

3

4 #include <stdio.h>

5 // Eg. Define an enum with days of the week OUTSIDE MAIN
6 enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

8 int main(void){

9 // Declare the use of a variable called day of type
10 // enum weekdays:

11 enum weekdays day;

12 day = SAT;

13 prinf("The day number 1is: %d\n", day);

14 // This will output 5, as the count starts at 0

15 return 0;

ENUMERATIO

NS 1 // Enumerations in C using the keyword enum
2 // A simple program
B
4 #include <stdio.h>
FOR EXAMPLE USING 5 // Eg. Define an enum with tice-cream types OUTSIDE MAIN
6 enum icecream {VANILLA, DULCE, CHOC, PISTACHIO, BERRY};

MENU ITEMS, !

8 int main(void){

IMAGINE IF AN ICE 9 // Declare the use of a variable called choice of type

10 // enum 1l1cecream:

CREAM SHOP HAD 57 11 enum icecream chotice;

11,7 chotce = DULCE;
FLAVOURS! 13 prinf("Kitchen,order for i1tem: %d recetived\n", choice);

14 return 0;
15 }

WHY e The advantages of using enums over #defines:

o Enumerations follow scope rules:
E N UMS? = You cannot have an enum state that is

the same in two different types of

enum vs #define enums
o Enumerations are automatically assigned

values, which makes the code easier to read

= Think of the case where you have a large
number of constants (error codes for
example!?)
o We use enums when we want a variable to

have a specific set of values

WHAT DID WE LEARN TODAY?

LOOP THE LOOP THE LOOP THE LOOP INSIDE A
LOOP LOOP LOOP LOOP (CAN'T
WHILE WHILE WHILE GET ENOUGH

(COUNTER) (SENTINEL) (CONDITION) OF A LOOP)

grid: grid.c

while_counter.c while_sentinel.c while_condition.c pyramid: pyramid.c

WHAT DID WE LEARN TODAY?

STRUCTURES ENUMERATIONS

CCCCCCCCCCCCCC

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

he forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

