COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 2

Variables and Constants - oh my!

ON MONDAY, WE TALKED:

e Welcome and Introductions
e Course Administration

e How COMP1511 works
e How to get help and the best ways to

approach learning Programming

e What is programming?

e What is Linux and working in Linux

LAST LECTURE...

TODAY...

e \ariables and how we store

information

e Constants
e Maths in C!

IN THIS LECTURE

WHERE IS THE CODE?

Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/26T1/CODE/WEEK_1

A BRIEF
RECAP

1 // A demo program showing output in C

2 // Welcome to COMP1511 :)

3 // Buckle, it i1s going to be a wild ride with
// a steep learning curve that we will hit 1in
// about Week 3!

o

OUR FIRST
PROGRAM

5
6
7 #include <stdio.h>
8

9 int main(void){
1§0) printf("Welcome to COMP1511!\n");
11 return 0;

HOW

DOES A
COMPUTER
REMEMBER

THINGS?

ONES AND
ZEROS!

e Computer memory is literally a big pile of
on-off switches
o We call these bits (smallest possible
unit in computing, a bit is a choice
between two things a 0 or a 1)
e We often collect these together into
bunches of 8 bits
o We call these bytes

WHAT
DOES THIS
LOOK
LIKE?

When we execute
code, the CPU will
actually process the
instructions and
perform basic
arithmetic, but the
RAM will keep track of
all the data needed in
those instructions and

operations.

High address

heap

global/static
variable

code

Low address

WHAT Is A e Qur way of asking the computer to
VARIABLE?

remember something for us

e Called a "variable” because it can change
its value

e A certain number of bits that we use to
represent something

e Made with a specific purpose in mind

WHAT
KINDS OF
VARIABLES
WILL WE

LEARN
TODAY?

Were going to start out with three data types

of variables:

int integer, a whole number (eg: -1,0,1,2,3)
char a single character (eg. ‘a) ‘A! etc)
double floating point number (eg: 3.14159,
8.534, 7.11)

Each of these has a different number of bytes
that are allocated in memory once the program

IS run...

NAMI N G e Names are a quick description of what the variable is

o Eg: “answer” and “diameter”

OU R o Rather than “a” and “b”
VARIAB L Es e We always use lower case letters to start our variable

names
e C is case sensitive:

IT IS AN ART - o “ansWer” and “answer” are two different

CALL IT LIKE YOU variables

SEE IT, LIKE YOU e C also reserves some words

USE IT AND o “return”, “int” and “double” cant be used as
SOMEONE ELSE variable names

HAS TO SEE IT! e Multiple words (use snake_case)

o We can split words with underscores:

"long_answer”

NAMI NG We name our variables in ways that make it

OU R obvious what they are representing. Remember
someone else has to be able to skim your code

VARIABLES and know what you are saying/doing!

STYLE GUIDE

https://cgi.cse.unsw.edu.au/~cs1511/26T1/resour
ces/style_guide.html

INTEGER

DATA TYPE int

e A whole number, with no fractions or
decimals
e Most commonly uses 32 bits (which is also 4
bytes)
e This gives us exactly 2°% different possible
values
e The maximum is very large, but it's not
infinite!
Exact ranges from -2,147,483,648 (-2
2,147,483,647 (231 - 1)

31)to

CHARACTE R e A single character in C can also be

represented as an int!

DATA TYPE char e This is because a single character variable
holds an ASCII value (integers 0-127), as
opposed to the character itself

e The syntax to assign a single character is to

put the character in single quotes: ‘a’

Terminal - Terminal

Wi ISE Cw e we mr oo e So for a capital letter A: the character is ‘A’

2 STX 18 DC2 34 " 1. 66 B 82 R 98 b 114 r

3 ETX 19 DC3 35
4 EOT 20 DC4 36
5 ENQ 21 NAK 37

51 3 67 C 83 S 99 ¢ 115 s

52 4 68 D 84 T 100 d 116 t d . .

53 5 69 E 85 U 101 117 th t t d 65
6 ACK 22 SYN 38 54 6 70 F 86 Vv 102 ? 118 E an e In S Ore IS

7 BEL 23 ETB 39 55 7 711 G 87 W 103 g 119 w

8 BS 24 CAN 40 56 8 72 H 88 X 104 h 120 x

SN BEM 4) 7o T sey e L1y e YOoU use a char to declare a character: char

—_—e—~ -

11 VT 27 ESC 43 + 59 ; 75 K 91 [107 k 123 {
12 FF 28 FS 44 , 60 < 76 L 92 \ 108 1 124 |
13 CR 29 GS 45 - 6l = 77 M 93] 109 m 125 }

A SIS S letter = "a’-- this will assign 97 to the

1~%

variable letter

DOUBLE e A double-sized floating point number

e A decimal value - "floating point” means the

DATA TYPE double point can be anywhere in the number
e Eg: 10.567 or 105.67 (the points are in

different places in the same digits)
e |t5 called "double” because its usually 64

bits, hence the double size of our integers
(or 8 bytes)

LET'S TRY 1 // This program shows how to declare
2 // and inittialise a vartiable
3
SOME CODE RIS

5

DECLARE AND 6 #include <stdio.h>

7

INITIALISE A 8 int main(void){
VARIABLE 2 // Declare a variable

1§0) int answer;

11 // Initialise a vartiable

12 answer = 42;

13 // Glve the variable a different value

14 answer = 13;

15

16 // We can also declare and initialise together
17 int answer_two = 42;

18

19 return 0;

20 }

PRI NTI NG e Not just for specific messages we type in
dvance
OUTTO a

e We can also print variables to our display!
TE RMI NAL e To print out a variable value, we use format
specifiers

printf() o this is a % symbol followed by some
characters to let the compiler know
what data type you want to print..

1// Printing a variable o %d where the output youd like to put an

2 int number = 13;
3 printf("My number is %d\n", number);

int (decimal value, hence %d)

o After the comma, you put the name of the

variable you want to write

PRINT OUT e The variables will match the symbols in the same

order as they appear!

MANY e You can have as many as you want and of
VARIABLES different types also!

WHY NOT O 1 // Printing out two variables

2
3 int number_one = 13;
4 int number_two = 31;

)
6 printf("My first number is %d and second number is %d\n", number_one, number_two);

LET'S TRY
DIFFERENT
TYPES OF
NUMBERS

INTS AND DOUBLES
- OH MY!

e The %d and %1 £ are format specifiers that are
used in printf statement to let the compiler know
what data type we need to output.

o %d stands for “decimal integer”
o %1f stands for “long floating point number”

(a double’
e Remember that we have to be very prescriptive

when we tell the computer what to do and that

extends to even telling it what types we are
printing in C

1 // Print an int and a double

2 int diameter = 5;

3 double pt = 3.141;

4 printf("The diameter is %d, pi i1s %lLf\n", diameter, pti);

WHAT e The %c format specifier can also be used in

printf statement to let the compiler know what
ABOUT data type we need to output (character).
CHAR? e %c stands for “character”

e Don't forget that when you declare a char, you

enclose it in single apostrophes to let the

CAN'T FORGET THE |
LONELY CHAR computer know that you are using a letter

character

1 // Print an int as a character
2 char letter = 'A';
3 printf("The letter %c has the ASCII value %d\n", letter, letter);

GREAT’ WE e Reads input from the user in the same format as
printf
CAN PRINT

e Format specifiers (%d, %1 £,%c) are used in the

To same way as for the printf statement

e The & bol tell f the add f th iabl
TERMINAL, e & symbol tells scanf the address of the variable
CAN WE TAKE

in memory (where the variable is located) that we
want to place the value into (more details later in

SOMETHING term)
FROM ;{gtsz\S::? an integer

3 printf("Please type in a number: ");

TERMINAL?
® 5

6 // Reading a double
7 double input_two;

scanf() 8 printf("Please type in a number: ");
9 scanf("SsLf", &ilnput_two);

WHAT ABOUT e |f you want scanf to read in a character, you

OUR LONELY will need to declare a character by using the
keyword: char

CHAR?

e Even though you have declared a char to store
your character into, it is still stored as an ASCI|

scanf()

value... so you can move between %d and %c

when you printf this variable

1 // Reading a single character as a character
2 char character;

3 printf("Please type in a character: ");

4 scanf("%c", &character);

WHAT IF A e Constants are like variables, only they never

change!

VARIABLE e To define a constant, we use #define and follow
N EVE R it with the name of the constant and the valuew

CHANGES? 1 // Using constants
o 2 #include <stdio.h>
3

4 // Define them before your main starts
5 #define PI 3.1415

THEN IT IS MOST 6 #define MEANING OF LIFE 42

7 #define MAX_NUMBER 13
LIKELY A 8

9 int main(void) {
CONSTANT... =

11 }

Style Guide: We name them in all caps so that we remember that

theytre not variables!

HOW DOES
SCANF()
REALLY

WORK?

A MAGICAL
POWER...

e Gives us the ability to scan stuff in from the
terminal (standard input)

e We have to tell the computer what we expect to
scanf() - is it an int, double, or char ?

e But since scanf() is a function does it return
something?

o Yes, scanf() returns the number of input values
that are scanned

o |f there is some input failure or error then it

returns EOF (end-of-file) - we will look at this
more later on!

o This can be useful to check for any errors

DID YOU
NOTICE HOW
A NEW LINE
IS READ BY

SCANF()?

BECAUSE /N IS A
CHARACTER ON THE
ASCII TABLE: 10 LF
(LINE FEED)

e You may have noticed that:
scanf("%d'", &number);

e is able to ignore anything other than a number when

it scans in - this is because whitespace is not a

number and the function looks for a number

e But did you notice that this is not the case for
scanf("%c", &character);

e This is because a new line (/n) is a character on the
ASCII table, which means it is still a valid character
to scan in (It is number 10 LF if you are interested!)

e To fix this, we can tell scanf() to ignore all
preceeding whitespace by using a special magic
trick:
scanf(" %c¢", &character);

L ET'S TAL K e A lot of arithmetic operations will look very familiar

in C

ABOUT o adding +
MATHS o subtracting -

o multiplying *

WE LOVE MATHS, > dividing /
RIGHT? C ALSO e These will happen in their normal mathematical
LOVES MATHS order
(SOMETIMES WITH e We can also use brackets to force precedence
QUIRKS). | |

1 // Using brackets to force precendence

2 int X = 5;

3wnt y = 10;

4 1int result;

5 result = (X + y) * X;

6 printf("The result is %d\n", result);

SUPER FUN
FACT, YOU
CAN DO
MATHS

WITH CHAR
BECAUSE
THEY ARE
JUST INTS!

e Because characters are represented as ints
inside the variable, you are able to move
around the ASCII values by adding or
subtracting to them.

e For example, if you are at ‘a’and you want to

get to ‘b, you can add 1

1 // Some basic maths!

2 char letter = 'a‘;

3 char next_letter = letter + 1;

4 printf("Original letter: %c with ASCII value %d\n", letter, letter);

5 printf("Next letter %c with ASCII value %d\n", next_letter, next_letter);

TH E QU I RKS e Check out Boeing 787/ that had to be rebooted

OF every 248 days (2*-hundredths of a seconds)
https://www.engadget.com/2015-05-01-

I NTEG E RS XX boeing-/87/-dreamliner-software-bug.html

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

=

https://www.theguardian.com/business/2015/may/01/us-
aviation-authority-boeing-787-dreamliner-bug-could-cause-
loss-of-control

https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html
https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html

TH E QU I RKS e |f we add two large ints together, we might go

OF over the maximum value, which will actually roll
around to the minimum value and possibly end

INTEGE RS. oo up negative (Check out Ariane 5 explosion), a

simple error like this caused a rather large

INTEGER problem:
OVERFLOW/ https://www.bbc.com/future/article/20150505

INTEGER -the-numbers-that-lead-to-disaster)
UNDERFLOW

TH E QU I RKS e |n a less destructive example, the video

OF Gangham Style on YouTube maxed out the
views counter :

I N T E G E RS oo https://www.bbc.com/news/world-asia-

30288542

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

PSY - GANGNAM STYLE (Z'= 2 EHE) MV

H officialpsy
P &8 Suoscive

TH E QUIRKS e Ints are not always 32-bits!
OF
INTEGERS...

INTEGER
OVERFLOW/
INTEGER
UNDERFLOW

TH E QU I RKS e No such thing as infinite precision

OF e We cant precisely encode a simple number like
Y3

DOUBLES. oo e |f we divide 1.0 by 3.0, we'll get an
approximation of %3

OFFENDING e The effect of approximation can compound the
REPEATERS more you use them

Now A e Remember that C thinks in data types
LITTLE BIT o If either numbers in the division are

doubles, the result will be a double

ABOUT o If both numbers are ints, the result will be
DIVISION an int, for example, 3/2 will not return 1.5,

because ints are only whole numbers

o ints will always drop whatever fraction

IT IS INTERESTING IN

C exists, they wont round nicely, so 5/3 will

result in 1
e % is called Modulus. It will give us the

remainder from a division between integers,
eg. 5% 3 = 2 (because 5/3 = 1 rem 2)

WHAT DID WE LEARN TODAY?

RECAP VARIABLES
Hello World! They come in different
our first program shapes and sizes - int,

double and char
Printing from variables
(printf)
Reading user input into
variables (scanf)

Using maths with variables

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

he forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

