COMP1511/1911 Programming Fundamentals

Week 9 Lecture 1

Linked Lists
A larger Application

COMP1511/COMP1911

Link to Week 9 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_9/

e o
.....
L 1

® 00
..............
...........
............

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_9/

Announcements

e Assignment 1 Marks:
o Hopefully out later today: look at feedback not just mark
e Revision Sessions:
o Last set of revision sessions on in week 11
o Look out for announcement and sign ups on the forum soon

COMP1511/COMP1911

Week 10 Practice Exams

e Heldin Labs for 2 hours
e This is how you get lab marks for week 10
o Marks are based on attempting it.

e If you arein an online tut-lab

o you can sign up for an in-person lab for week 10
https://buvtickets.at/comp1511unsw/1857368

e Don't miss another chance to see what the exam environment
is like and get used to using it. And try out some linked list
hurdles and other exam questions in an exam environment.

COMP1511/COMP1911

https://buytickets.at/comp1511unsw/1857368

Last Week

e Inserting Nodes anywhere

o Deleting Nodes
o From the start of the list
o Freeing all nodes
o Search and Delete Approach 1

COMP1511/COMP1911

Today's Lecture

o Recap Deletion:
o Delete First Node
o Free all nodes
o Linked List Search and Delete Exercise
s Second implementation debugging
s Extending first implementation to delete all occurrences
e Linked Lists a Larger Application.

o Linked Lists with complex data (other than just int)
o Multi-file Linked Lists
o Helpful for assignment 2

COMP1511/COMP1911

Linked List Exercise

e How could | print the data in the first node?

e How could | print the data in the second node?

e How could | modify the next field in the first node
to be NULL? What would that do?

struct node {

int data;

struct node *next;
};

0x15
head = 0x28

(0x28 0x80 0x60
13 //4 17 //' 42

0x80 0x60 NULL

_—

COMP1511/COMP1911

Deletion Recap

COMP1511/COMP1911

Deleting the First Node in a Linked List

Let’s write a function to delete the first node in a linked list.
We need to consider the case when the list is empty

o Ifitis empty we can't delete anything

e We just return the head of the list which would be NULL

if (head == NULL) {

return head; //or return NULL;

COMP1511/COMP1911

Deleting the First Node in a Linked List

If our list is not empty, we want to make the second node the new head of

the list and free the first node that we want to delete.

0x15

head = 0x28

(0x28
13

0x80

//(

COMP1511/COMP1911

0x80 0x60
17 / 42
0x60 0x48

0x48

y

NULL

10

Deleting the First Node in a Linked List

What would be the problem calling free on head first?

0x15 free (head) ;

head = 0x28

(0x28 0x80 0x60 0x48
17 42 5

//4 T /
ft 0x60 || 0x48 NULL

COMP1511/COMP1911

11

Deleting the First Node in a Linked List

We can't access memory that has been freed. We have lost the rest of the

list
0x15 // This will crash

head = 0x28 head = head->next;
(0x28 0x80 0x60 0x48
17 42 5

//4 v /
ft 0x60 || 0x48 NULL

COMP1511/COMP1911

Deleting the First Node in a Linked List

What would be the problem with updating head first?

0x15 head = head->next;

head = 0x80

o::zs\‘ 0x80 0x60 0x48

13 //4 17 / 42 / 5

0x80 0x60 0x48 NULL

COMP1511/COMP1911

13

Deleting the First Node in a Linked List

We now have no pointer to the first node so we can't free it!

0x15
head = 0x80

0x2§\\\\\
13 //(

0x80

COMP1511/COMP1911

free (???);

0x80 0x60
17 / 42
0x60 0x48

0x48

y

NULL

14

Deleting the First Node in a Linked List

Let’s create a pointer to the first node

0x15 struct node *temporary = head;

head = 0x28

<:/}0x28 0x80 0x60 0x48
13 17 42 5

A

0x80 0x60 0x48 NULL

%

temporary = 0x28 I

COMP1511/COMP1911

15

Deleting the First Node in a Linked List

Let’s create a pointer to the first node

0x15 struct node *temporary = head;

head = 0x28

<:/}0x28 0x80 0x60 0x48
13 17 42 5

A

0x80 0x60 0x48 NULL

%

temporary = 0x28 I

COMP1511/COMP1911

16

Deleting the First Node in a Linked List

Now we can update head

head = head->next;
0x15

head = 0x80

0x28 \\\\ 0x80 0x60 0x48

13//17/42/

0x80 0x60 0x48 NULL

%

temporary = 0x28 I

COMP1511/COMP1911

17

Deleting the First Node in a Linked List

Now we can free the first node

0x15

head =

0x80

0x28 \

X

//(

%

free (temporary) ;

0x48

0x80 0x60
17 / 42
0x60 0x48

NULL

Itemporary = 0x28

COMP1511/COMP1911

18

Delete All Nodes the Correct Way
Let’s test it and check it with dcc --leak-check

// Delete all nodes from a given list
void delete all nodes(struct node *head) ({
struct node *current = head;
while (current !'= NULL) {
head = head->next;
free (current) ;

current = head;

}

COMP1511/COMP1911

19

Search and Delete

o We want to search for a node with a particular value in it and
then delete it

e Where could the item be
o Nowhere - if it is an empty list or the list does not contain the

value

At the head (deleting the first node in the list)

Between any 2 nodes in the list

At the tail (deleting the last node in the list)

There could be multiple occurrences! For now let’s just consider
the first occurrence

O O O O

COMP1511/COMP1911

20

Search and delete: between 2 nodes

e To delete a node we need to link the previous node to the next

node
o |If we want to delete the node with 42, we need to find the node
before it
We need a pointer
to this node
head ——| 13 o 17 5 |~ NULL

COMP1511/COMP1911 21

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

}

previous = current
NULL l
head ——| 13 |—- 17 5 | NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

L

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

i

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

|

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: Approach 1

Then we need to connect current node to the one after the one we
are deleting.

previous current

s S
/ \
/ \

head — | 13 4 17 £X “» 5 | . NULL

COMP1511/COMP1911

Search and delete: Approach 1

Then we need to connect current node to the one after the one we
are deleting.

previous->next = current->next;

previous current

head ——| 13 - 17 /z1|_£|—\k» 5 |——» NULL

COMP1511/COMP1911

Search and delete: Approach 1

Now we can free the node we want to delete

free (current) ;

head ——

COMP1511/COMP1911

13

previous current

|

- 17

-

— NULL

29

Search and delete Approach 2: general case

// BApproach 2: Just use 1 pointer to traverse

// but check the next node

struct node *current = head;

while (current->next !'= NULL &&
current->next->data !'= search key) {

current = current->next;

current

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete Approach 2: general case

// BApproach 2: Just use 1 pointer to traverse

// but check the next node

struct node *current = head;

while (current->next !'= NULL &&
current->next->data !'= search key) {

current = current->next;

current

|

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: Approach 2

Then we need to connect current node to the one after the one we
are deleting. But we still need a pointer to the node we want to free.
How can we do that?

current
l //""\\
// \\
head —~| 13 4 17 E > 5 |- NULL

COMP1511/COMP1911

Search and delete: Approach 2

struct node *temporary = current->next;

head ——

COMP1511/COMP1911

13

current

|

- 17

temporary

— NULL

33

Search and delete: Approach 2

struct node *temporary = current->next;

current->next = temporary->next;

current temporary

W

head —| 13 - 17 42 9

— NULL

COMP1511/COMP1911

34

Search and delete: Approach 2

Now we can free the node we want to delete

free (temporary) ;

head ——

COMP1511/COMP1911

13

|

current temporary

17

S

— NULL

35

Coding

Let's code up the second approach.
Let's extend our first approach to delete all occurrences.

COMP1511/COMP1911

36

COMP1511/COMP1911

Email Management System

37

Email Management System

o Files/code provided (4 files):
o email_management_system.c (TODO)
o email_management_system.h (PROVIDED)
o main.c (PROVIDED)
o test_main.c (PROVIDED)

o Complete all TODO function definitions in
email_management_system.c

COMP1511/COMP1911

38

Before you start coding

e Understand the Problem

o what the provided code is doing

o how it all fits together

o how to compile it and run the code
e Draw diagrams

o do this before/while coding each function too!
e Think about different test cases

o do this before/while coding each function too!

COMP1511/COMP1911

39

structs

struct folder { struct email {
char name[MAX LEN]; char sender [MAX LEN];
//to use later :) char subject[MAX LEN];

//int num emails; double size;

struct email *emails; enum email type type;

enum priority type priority;

struct email *next;

Where are our nodes? Where is the head or list?

COMP1511/COMP1911 40

Visualisation of the system
folde r=—p

4

COMP1511/COMP1911

struct folder

p

N

name

| num_emails |

emails

NULL

41

Visualisation of the system

struct folder

~

>

name

folde r=——

num_emails

emails

struct email

-

>

sender

subject

size

type

priority

@

4

COMP1511/COMP1911

next

struct email

p

N

sender

subject

size

type

priority

next

struct email

(

\

sender

subject

size

type

priority

next

\

v
NULL

42

Visualisation of the system

We can create many

folders, each

containing linked lists

of emails.

COMP1511/COMP1911

struct email

struct email

struct email

ooy e |\)
subject subject | subject |
size size | size |
type type [o |
priority priority | priority |
next next :J next IJ

struct email

struct email

v
NULL

struct email

@ ((T N
I sender I sender I sender I
| subject | subject I subject I
I size I size I size I
[ope [type [o |
I priority | priority | priority I
d next J next 3 \I next IJ

v
NULL

43

Compiling and running the code

e We have 2 files that contain main functions.
e We can only have 1 main function per program.
e We can compile and run the first program as follows:

dcc -o test main test main.c email management system.c

./test main

e We can compile and second program as follows:

dcc -o main main.c email management system.c
./main

COMP1511/COMP1911

44

Functions to Write

o Stage
o create_folder
o insert_email_at_head
o search_email
o Stage 2
o clear_folders
o delete_email_of_priority
o Stage 3
o merge_folders
o split_folder

COMP1511/COMP1911

45

Stage 4 Extension Stage

o Keep track of size of folder to make count_emails more
efficient.

o Create an account system struct that contains a linked list of
folders and an account name.

o Write code to print all folders

o Write code to print out all emails in all folders

COMP1511/COMP1911

46

What did we learn today?

e Recap

o Linked List Deletion

o Implement search and delete approach 2

o Extend approach 1 to delete all occurrences
e Larger Linked List Application

o Multi-file program

o Linked lists used inside of other structs

o Linked lists containing complex data

COMP1511/COMP1911

47

Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/xdhUUfVSN7

COMP1511/COMP1911

48

Next Lecture:

o Continue with Linked List Application
e Exam Information
e Revision

COMP1511/COMP1911

49

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

50

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

