
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals
 

Week 9 Lecture 1

Linked Lists
A larger Application

1



COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_9/

 

Link to Week 9 Live Lecture Code

2

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_9/


COMP1511/COMP1911

Announcements
● Assignment 1 Marks: 

○ Hopefully out later today: look at feedback not just mark
● Revision Sessions:

○ Last set of revision sessions on in week 11
○ Look out for announcement and sign ups on the forum soon

3



COMP1511/COMP1911

Week 10 Practice Exams
● Held in Labs for 2 hours
● This is how you get lab marks for week 10

○ Marks are based on attempting it. 
● If you are in an online tut-lab 

○ you can sign up for an in-person lab for week 10  
https://buytickets.at/comp1511unsw/1857368

● Don’t miss another chance to see what the exam environment 
is like and get used to using it. And try out some linked list 
hurdles and other exam questions in an exam environment.

4

https://buytickets.at/comp1511unsw/1857368


COMP1511/COMP1911

Last Week
● Inserting Nodes anywhere
● Deleting Nodes

○ From the start of the list
○ Freeing all nodes
○ Search and Delete Approach 1

5



COMP1511/COMP1911

Today’s Lecture
● Recap Deletion: 

○ Delete First Node
○ Free all nodes
○ Linked List Search and Delete Exercise

■ Second implementation debugging
■ Extending first implementation to delete all occurrences

● Linked Lists a Larger Application.
○ Linked Lists with complex data (other than just int)
○ Multi-file Linked Lists
○ Helpful for assignment 2

6



COMP1511/COMP1911

Linked List Exercise

7

13

0x80

17

0x28 0x80

0x60

0x15
head = 0x28

42

0x60

NULL

● How could I print the data in the first node?
● How could I print the data in the second node?
● How could I modify the next field in the first node 

to be NULL? What would that do?

struct node {

   int data;

   struct node *next;

};



COMP1511/COMP1911

Deletion Recap

8



COMP1511/COMP1911

Let’s write a function to delete the first node in a linked list.
We need to consider the case when the list is empty
● If it is empty we can’t delete anything
● We just return the head of the list which would be  NULL

Deleting the First Node in a Linked List

9

if (head == NULL) {

    return head; //or return NULL;

}



COMP1511/COMP1911

If our list is not empty, we want to make the second node the new head of 
the list and free the first node that we want to delete. 

Deleting the First Node in a Linked List

10

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28



COMP1511/COMP1911

What would be the problem calling free on head first?

Deleting the First Node in a Linked List

11

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

free(head);



COMP1511/COMP1911

We can’t access memory that has been freed. We have lost the rest of the 
list

Deleting the First Node in a Linked List

12

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

// This will crash

head = head->next; 

                   



COMP1511/COMP1911

What would be the problem with updating head first?

Deleting the First Node in a Linked List

13

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next; 

                   



COMP1511/COMP1911

We now have no pointer to the first node so we can’t free it!

Deleting the First Node in a Linked List

14

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(???);

                   



COMP1511/COMP1911

Deleting the First Node in a Linked List

15

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

temporary = 0x28

struct node *temporary = head;

Let’s create a pointer to the first node



COMP1511/COMP1911

Deleting the First Node in a Linked List

16

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

temporary = 0x28

struct node *temporary = head;

Let’s create a pointer to the first node



COMP1511/COMP1911

Deleting the First Node in a Linked List

17

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next;

Now we can update head

temporary = 0x28



COMP1511/COMP1911

Deleting the First Node in a Linked List

18

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(temporary);

Now we can free the first node

temporary = 0x28



COMP1511/COMP1911

Delete All Nodes the Correct Way

19

Let’s test it and check it with dcc --leak-check

// Delete all nodes from a given list

void delete_all_nodes(struct node *head) {

    struct node *current = head;

    while (current != NULL) {

        head = head->next; 

        free(current);

        current = head;

    }

}



COMP1511/COMP1911

● We want to search for a node with a particular value in it and 
then delete it

● Where could the item be
○ Nowhere - if it is an empty list or the list does not contain the 

value
○ At the head (deleting the first node in the list)
○ Between any 2 nodes in the list
○ At the tail (deleting the last node in the list)
○ There could be multiple occurrences! For now let’s just consider 

the first occurrence

Search and Delete

20



COMP1511/COMP1911

● To delete a node we need to link the previous node to the next 
node
○ If we want to delete the node with 42, we need to find the node 

before it

Search and delete: between 2 nodes

21

head 13 17 42 5

We need a pointer 
to this node

           
NULL

 



COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

    current = current->next;

}

Search and delete: between 2 nodes

22

head 13 17 42 5

previous = 
NULL

           
NULL

 

current



COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

    current = current->next;

}

Search and delete: between 2 nodes

23

head 13 17 42 5
           

NULL
 

currentprevious



COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

    current = current->next;

}

Search and delete: between 2 nodes

24

head 13 17 42 5

previous

           
NULL

 

current



COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

    current = current->next;

}

Search and delete: between 2 nodes

25

head 13 17 42 5

previous

           
NULL

 

current



COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

    current = current->next;

}

Search and delete: between 2 nodes

26

head 13 17 42 5

previous

           
NULL

 

current



COMP1511/COMP1911

Then we need to connect current node to the one after the one we 
are deleting. 

Search and delete: Approach 1

27

head 13 17 42 5

previous

           
NULL

 

current

42



COMP1511/COMP1911

Then we need to connect current node to the one after the one we 
are deleting. 

Search and delete: Approach 1

28

head 13 17 42 5

previous

           
NULL

 

current

previous->next = current->next;

42



COMP1511/COMP1911

Search and delete: Approach 1

29

head 13 17 42 5

previous

           
NULL

 

current

free(current);

Now we can free the node we want to delete 

42



COMP1511/COMP1911

// Approach 2: Just use 1 pointer to traverse 

// but check the next node

struct node *current = head;

while (current->next != NULL && 

       current->next->data != search_key) {

current = current->next;

}

Search and delete Approach 2: general case

30

head 13 17 42 5

current

           
NULL

 



COMP1511/COMP1911

// Approach 2: Just use 1 pointer to traverse 

// but check the next node

struct node *current = head;

while (current->next != NULL && 

       current->next->data != search_key) {

current = current->next;

}

Search and delete Approach 2: general case

31

head 13 17 42 5

current

           
NULL

 



COMP1511/COMP1911

Then we need to connect current node to the one after the one we 
are deleting. But we still need a pointer to the node we want to free.
How can we do that?

Search and delete: Approach 2

32

head 13 17 42 5

current

           
NULL

 
42



COMP1511/COMP1911

Search and delete: Approach 2

33

head 13 17 42 5

current

           
NULL

 

temporary

struct node *temporary = current->next;

42



COMP1511/COMP1911

Search and delete: Approach 2

34

head 13 17 42 5

current

           
NULL

 

temporary

struct node *temporary = current->next;

current->next = temporary->next;

42



COMP1511/COMP1911

Search and delete: Approach 2

35

head 13 17 42 5

current

           
NULL

 

temporary

free(temporary);

Now we can free the node we want to delete 

42



COMP1511/COMP1911

Let’s code up the second  approach.
Let’s extend  our first approach to delete all occurrences.

Coding

36



COMP1511/COMP1911

Email Management System

37



COMP1511/COMP1911

● Files/code provided (4 files): 
○ email_management_system.c (TODO)
○ email_management_system.h (PROVIDED) 
○ main.c (PROVIDED) 
○ test_main.c (PROVIDED)

● Complete all `TODO` function definitions in 
email_management_system.c 

Email Management System

38



COMP1511/COMP1911

● Understand the Problem
○ what the provided code is doing
○ how it all fits together
○ how to compile it and run the code

● Draw diagrams
○ do this before/while coding each function too!

● Think about different test cases 
○ do this before/while coding each function too!

Before you start coding

39



COMP1511/COMP1911

struct folder {

    char name[MAX_LEN];

    //to use later :)

    //int num_emails;

    struct email *emails;

};

structs

40

struct email {

    char sender[MAX_LEN];

    char subject[MAX_LEN];

    double size;

    enum email_type type;

    enum priority_type priority;

    struct email *next;

};

Where are our nodes? Where is the head or list?



COMP1511/COMP1911

Visualisation of the system

41



COMP1511/COMP1911

Visualisation of the system

42



COMP1511/COMP1911

Visualisation of the system

43

We can create many 
folders, each 
containing linked lists 
of emails.



COMP1511/COMP1911

● We have 2 files that contain main functions.
● We can only have 1 main function per program.
● We can compile and run the first program as follows:

Compiling and running the code

44

● We can compile and second program as follows:

dcc -o test_main test_main.c email_management_system.c

./test_main

dcc -o main main.c email_management_system.c

./main



COMP1511/COMP1911

Functions to Write

45

● Stage 1
○ create_folder
○ insert_email_at_head
○ search_email

● Stage 2
○ clear_folders
○ delete_email_of_priority

● Stage 3
○ merge_folders
○ split_folder



COMP1511/COMP1911

● Keep track of size of folder to make count_emails more 
efficient.

● Create an account system struct that contains a linked list of 
folders and an account name.

● Write code to print all folders
● Write code to print out all emails in all folders

Stage 4 Extension Stage

46



COMP1511/COMP1911 47

● Recap
○ Linked List Deletion
○ Implement search and delete approach 2
○ Extend approach 1 to delete all occurrences

● Larger Linked List Application
○ Multi-file program
○ Linked lists used inside of other structs
○ Linked lists containing complex data 

What did we learn today?



COMP1511/COMP1911

Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.

48

https://forms.office.com/r/xdhUUfVSN7



COMP1511/COMP1911

Next Lecture:
● Continue with Linked List Application
● Exam Information
● Revision

49



COMP1511/COMP1911 50

Content Related Questions:  
Forum

Admin related Questions email: 
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

