
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 8 Lecture 2

Linked Lists
Deletion

1

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs 1511/25T3/code/week_8/

Link to Week 8 Live Lecture Code

2

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_8/

COMP1511/COMP1911

Revision Sessions This Week
Thursday 2-4pm (Online on Microsoft Teams)

Please sign up for the revision sessions and vote for
your favourite topic on the forum.

3

COMP1511/COMP1911

Last Lecture
● Linked List recap
● List Length
● Inserting nodes

○ At the end(tail)
○ Inserting in the middle

4

COMP1511/COMP1911

Today’s Lecture
● Recap:

○ Traversing
○ Exercise: Search for a value
○ Exercise: Insert node at position

● Linked list deletion
○ First node
○ All nodes
○ Search and delete

5

COMP1511/COMP1911

Linked List Recap
● Recap:

○ Traversal
○ Exercise: search for a value
○ Exercise: Insert at position

6

COMP1511/COMP1911

Traversing a List

7

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

COMP1511/COMP1911

Traversing a List

8

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

COMP1511/COMP1911

Traversing a List

9

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

struct node *current = head;

current = 0x28

COMP1511/COMP1911

Traversing a List

10

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along

current = 0x28

COMP1511/COMP1911

Traversing a List

11

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x80

COMP1511/COMP1911

Traversing a List

12

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x60

COMP1511/COMP1911

Traversing a List

13

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x48

COMP1511/COMP1911

Traversing a List

14

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

We should stop now that current == NULL

COMP1511/COMP1911

Write a function to search for a given value in a linked list
Return 1 if it exists and 0 otherwise

What cases should we make sure we test?

Exercise

15

COMP1511/COMP1911

Inserting at a given position

16

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

We want to insert a new node at position 2, assuming positions start

at 0.

COMP1511/COMP1911

Inserting node at position

17

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Use a counter and stop traversing when we get to the node before

the position we want to insert at (position - 1). In this case position 1.

COMP1511/COMP1911

Inserting at Position

18

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

struct node *current = head;

int counter = 0;

current = 0x28

COMP1511/COMP1911

Inserting at position

19

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

while (counter < position - 1) {
 current = current->next;
 counter++;
}

COMP1511/COMP1911

Inserting at Position

20

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

Now we want to connect our new node. It should come after the

current node, but before current->next

COMP1511/COMP1911

Inserting at Position

21

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

9

???

0x5C

new_node = 0x5C

COMP1511/COMP1911

Inserting at Position

22

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

9

0x60

0x5C

new_node = 0x5C

COMP1511/COMP1911

Inserting at Position

23

13

0x80

17 42

0x28 0x80 0x60

0x5C 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

current->next = new_node; 9

0x60

0x5C

new_node = 0x5C

COMP1511/COMP1911 24

● What conditions will break this?
○ What happens if it is an empty list?
○ What happens if there is only 1 item in the list?
○ Anything else we should check?

● How can we modify our code to handle any of these situations
that break it?

Coding: Inserting at Position

COMP1511/COMP1911

Deletion

25

COMP1511/COMP1911

Let’s write a function to delete the first node in a linked list.
We need to consider the case when the list is empty
● If it is empty we can’t delete anything
● We just return the head of the list which would be NULL

Deleting the First Node in a Linked List

26

if (head == NULL) {

 return head; //or return NULL;

}

COMP1511/COMP1911

If our list is not empty, we want to make the second node the new head of
the list and free the first node that we want to delete.

Deleting the First Node in a Linked List

27

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

COMP1511/COMP1911

What would be the problem calling free on head first?

Deleting the First Node in a Linked List

28

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

free(head);

COMP1511/COMP1911

We can’t access memory that has been freed. We have lost the rest of the
list

Deleting the First Node in a Linked List

29

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

// This will crash

head = head->next;

COMP1511/COMP1911

What would be the problem with updating head first?

Deleting the First Node in a Linked List

30

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next;

COMP1511/COMP1911

We now have no pointer to the first node so we can’t free it!

Deleting the First Node in a Linked List

31

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(???);

COMP1511/COMP1911

Deleting the First Node in a Linked List

32

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

temporary = 0x28

struct node *temporary = head;

Let’s create a pointer to the first node

COMP1511/COMP1911

Deleting the First Node in a Linked List

33

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next;

Now we can update head

temporary = 0x28

COMP1511/COMP1911

Deleting the First Node in a Linked List

34

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(temporary);

Now we can free the first node

temporary = 0x28

COMP1511/COMP1911

struct node *delete_first_node(struct node *head) {

 if (head == NULL) {

 return head;

 }

 struct node *temporary = head;

 head = head->next;

 free(temporary);

 return head;

}

Deleting the First Node from a List

35

COMP1511/COMP1911

// Delete all nodes from a given list

void delete_all_nodes(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 free(current);

 current = current->next;

 }

}

Delete All Nodes the wrong way

36

What is wrong with this code?

COMP1511/COMP1911

Delete All Nodes the wrong way

37

Don’t forget that if you free memory, you can’t use it!

// Delete all nodes from a given list

void delete_all_nodes(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 free(current);

 // Accessing memory that has just been freed

 current = current->next;

 }

 }

COMP1511/COMP1911

Delete All Nodes the Correct Way

38

Let’s test it and check it with dcc –leak-check

// Delete all nodes from a given list

void delete_all_nodes(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 head = head->next;

 free(current);

 current = head;

 }

}

COMP1511/COMP1911

● We want to search for a node with a particular value in it and
then delete it

● Where could the item be
○ Nowhere - if it is an empty list or the list does not contain the

value
○ At the head (deleting the first node in the list)
○ Between any 2 nodes in the list
○ At the tail (deleting the last node in the list)
○ There could be multiple occurrences! For now let’s just consider

the first occurrence

Search and Delete

39

COMP1511/COMP1911

● To delete a node we need to link the previous node to the next
node
○ If we want to delete the node with 42, we need to find the node

before it

Search and delete: between 2 nodes

40

head 13 17 42 5

We need a pointer
to this node

NULL

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

41

head 13 17 42 5

previous =
NULL

NULL

current

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

42

head 13 17 42 5

NULL

currentprevious

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

43

head 13 17 42 5

previous

NULL

current

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

44

head 13 17 42 5

previous

NULL

current

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

45

head 13 17 42 5

previous

NULL

current

COMP1511/COMP1911

Then we need to connect current node to the one after the one we
are deleting.

Search and delete: Approach 1

46

head 13 17 42 5

previous

NULL

current

42

COMP1511/COMP1911

Then we need to connect current node to the one after the one we
are deleting.

Search and delete: Approach 1

47

head 13 17 42 5

previous

NULL

current

previous->next = current->next;

42

COMP1511/COMP1911

Search and delete: Approach 1

48

head 13 17 42 5

previous

NULL

current

free(current);

Now we can free the node we want to delete

42

COMP1511/COMP1911

// Approach 2: Just use 1 pointer to traverse

// but check the next node

struct node *current = head;

while (current->next != NULL &&

 current->next->data != search_key) {

current = current->next;

}

Search and delete Approach 2: general case

49

head 13 17 42 5

current

NULL

COMP1511/COMP1911

Then we need to connect current node to the one after the one we
are deleting. But we still need a pointer to the node we want to free.
How can we do that?

Search and delete: Approach 2

50

head 13 17 42 5

current

NULL

42

COMP1511/COMP1911

Search and delete: Approach 2

51

head 13 17 42 5

current

NULL

temporary

struct node *temporary = current->next;

42

COMP1511/COMP1911

Search and delete: Approach 2

52

head 13 17 42 5

current

NULL

temporary

struct node *temporary = current->next;

current->next = temporary->next;

42

COMP1511/COMP1911

Search and delete: Approach 2

53

head 13 17 42 5

current

NULL

temporary

free(temporary);

Now we can free the node we want to delete

42

COMP1511/COMP1911

Let’s code up both of these approaches.
Let’s extend our first approach to delete all occurrences.

Coding

54

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

55

https://forms.office.com/r/TDmCcARMMb

COMP1511/COMP1911 56

● Recap
● Inserting at any position
● Deleting elements

○ First node
○ All nodes
○ Search and delete

What did we learn today?

COMP1511/COMP1911

Next Lecture
● Linked Lists a Larger Application.

○ Linked Lists as fields in other structs
○ Linked Lists with more complex data (other than just int)
○ Multi-file Linked Lists
○ Helpful for assignment 2

57

COMP1511/COMP1911 58

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

