COMP1511/1911 Programming Fundamentals

Week 8 Lecture 2

Linked Lists
Deletion

COMP1511/COMP1911

Link to Week 8 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs 1511/25T3/code/week_8/

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_8/

Revision Sessions This Week

Thursday 2-4pm (Online on Microsoft Teams)

Please sign up for the revision sessions and vote for
your favourite topic on the forum.

COMP1511/COMP1911

Last Lecture

e Linked List recap
o ListLength

e Inserting nodes
o At the end(tail)
o Inserting in the middle

COMP1511/COMP1911

Today's Lecture

e Recap:

o Traversing

o Exercise: Search for a value

o Exercise: Insert node at position
o Linked list deletion

o First node

o All nodes

o Search and delete

COMP1511/COMP1911

Linked List Recap

e Recap:
o Traversal
o Exercise: search for a value
o Exercise: Insert at position

COMP1511/COMP1911

Traversing a List

0x15
head = 0x28

0x28 0x80 0x60 0x48

‘13|//17/42/5

0x80 0x60 0x48 NULL

COMP1511/COMP1911

Traversing a List

0x15

head =

0x28

0x28

13

0x80

Set a pointer to the beginning of the list

//1

COMP1511/COMP1911

0x80

17

0x60

0x60

//ﬂ

42

0x48

0x48

¥

NULL

Traversing a List

0x15

head =

0x28

0x28

0x80

13

0x80

%

17

?

0x60

0x60

//ﬂ

current

0x28‘

COMP1511/COMP1911

42

0x48

struct node *current = head;

Set a pointer to the beginning of the list

0x48

¥

NULL

Traversing a List

0x15

head =

0x28

0x28

0x80

13

0x80

%

17

?

0x60

0x60

//ﬂ

current

0x28‘

COMP1511/COMP1911

42

0x48

Now we need to move current along

0x48

¥

NULL

10

Traversing a List

0x15

head =

0x28

0x28

Now we need to move current along
current = current->next;

0x80

13

0x80

0x60

//1’ 17

0x60

//f

COMP1511/COMP1911

?

42

0x48

0x48

¥

‘current

0x80 |

NULL

11

Traversing a List

0x15

head =

0x28

0x28

13

0x80

Now we need to move current along
current = current->next;

COMP1511/COMP1911

0x80 0x60 0x48
/ 17 / 42 / 5
0x60 [0x48 NULL
‘current = 0x60‘

12

Traversing a List

0x15 Now we need to move current along
head = 0x28 current = current->next;
0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [0x48 NULL
‘current = 0x48‘

COMP1511/COMP1911 13

Traversing a List

0x15 We should stop now that current == NULL
head = 0x28

0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [0x48 NULL

‘current = NULL

COMP1511/COMP1911 14

Exercise

Write a function to search for a given value in a linked list
Return 1 if it exists and 0 otherwise

What cases should we make sure we test?

COMP1511/COMP1911

15

Inserting at a given position

We want to insert a new node at position 2, assuming positions start

at 0.

0x15

head

= 0x28

0x28

(r

13

0x80

0x80 0x60
17 42
0x60 0x48

0x48

y

COMP1511/COMP1911

NULL

16

Inserting node at position

Use a counter and stop traversing when we get to the node before

the position we want to insert at (position - 1). In this case position 1.

0x15
head = 0x28

(0x28 0x80 0x60 0x48
13 / 17 42 5
/ // /

0x80 0x60 0x48 NULL

COMP1511/COMP1911

Inserting at Position

struct node *current = head;

0x48

NULL

int counter = 0;
0x15
head = 0x28
(0x28 0x80 0x60
13 //{ 17 42
, 4
0x80 0x60 0x48
current = 0x28 I

COMP1511/COMP1911

18

Inserting at position

while (counter < position - 1) {

current = current->next;

0x48

y

counter++;
0x15 }
head = 0x28
(0x28 0x80 0x60
13 //4 17 42
, 4
0x80 0x60 0x48
A
Icurrent = 0x80 I

COMP1511/COMP1911

NULL

19

Inserting at Position

Now we want to connect our new node. It should come after the

current node, but before current->next

0x15
head = 0x28

(0x28 0x80 0x60 0x48
13 / 17 42 5
/ ///' ///'

0x80 0x60 0x48 NULL

3

Icurrent = 0x80 I

COMP1511/COMP1911

Inserting at Position

0x5C
9]\ new_node = 0x5C
0x15 —
head = 0x28 ??7?
(0x28 0x80 0x60 0x48
13 / 17 / 42 5
/ ///'
0x80 0x60 0x48 NULL
3

Icurrent = 0x80 I

COMP1511/COMP1911

Inserting at Position

new_node->next = current->next; 0x5C
)]\ new node = 0x5C
0x15 —
head = 0x28 0x60
(0x28 0x80 N 0x60 0x48
13 / 17 / 42 5
/ § /
0x80 0x60 0x48 NULL

Icurrent = 0x80 I

COMP1511/COMP1911

22

Inserting at Position

new_pode—>next = current->next;

current->next = new_node;

0x15
head = 0x28
(0x28 0x80
13 //(17
/]
0x80 0x5C
Icurrent = 0x80

COMP1511/COMP1911

0x5C
9]\ new=node = 0x5C
0x60
\ 0x60 0x48
42 ///’ 5
0x48 NULL

23

Coding: Inserting at Position

e What conditions will break this?
o What happens if it is an empty list?
o What happens if there is only 1 item in the list?
o Anything else we should check?
o How can we modify our code to handle any of these situations

that break it?

COMP1511/COMP1911

24

Deletion

Deleting the First Node in a Linked List

Let’s write a function to delete the first node in a linked list.
We need to consider the case when the list is empty

o Ifitis empty we can't delete anything

e We just return the head of the list which would be NULL

if (head == NULL) {

return head; //or return NULL;

COMP1511/COMP1911

26

Deleting the First Node in a Linked List

If our list is not empty, we want to make the second node the new head of

the list and free the first node that we want to delete.

0x15

head = 0x28

(0x28
13

0x80

//(

COMP1511/COMP1911

0x80 0x60
17 / 42
0x60 0x48

0x48

y

NULL

27

Deleting the First Node in a Linked List

What would be the problem calling free on head first?

0x15 free (head) ;

head = 0x28

(0x28 0x80 0x60 0x48
17 42 5

//4 T /
ft 0x60 || 0x48 NULL

COMP1511/COMP1911

28

Deleting the First Node in a Linked List

We can't access memory that has been freed. We have lost the rest of the

list
0x15 // This will crash

head = 0x28 head = head->next;
(0x28 0x80 0x60 0x48
17 42 5

//4 v /
ft 0x60 || 0x48 NULL

COMP1511/COMP1911

Deleting the First Node in a Linked List

What would be the problem with updating head first?

0x15 head = head->next;

head = 0x80

o::zs\‘ 0x80 0x60 0x48

13 //4 17 / 42 / 5

0x80 0x60 0x48 NULL

COMP1511/COMP1911

30

Deleting the First Node in a Linked List

We now have no pointer to the first node so we can't free it!

0x15
head = 0x80

0x2§\\\\\
13 //(

0x80

COMP1511/COMP1911

free (???);

0x80 0x60
17 / 42
0x60 0x48

0x48

y

NULL

31

Deleting the First Node in a Linked List

Let’s create a pointer to the first node

0x15 struct node *temporary = head;

head = 0x28

<:/}0x28 0x80 0x60 0x48
13 17 42 5

A

0x80 0x60 0x48 NULL

%

temporary = 0x28 I

COMP1511/COMP1911

32

Deleting the First Node in a Linked List

Now we can update head

head = head->next;
0x15

head = 0x80

0x28 \\\\ 0x80 0x60 0x48

13//17/42/

0x80 0x60 0x48 NULL

%

temporary = 0x28 I

COMP1511/COMP1911

33

Deleting the First Node in a Linked List

Now we can free the first node

0x15

head =

0x80

0x28 \

X

//(

%

free (temporary) ;

0x48

0x80 0x60
17 / 42
0x60 0x48

NULL

Itemporary = 0x28

COMP1511/COMP1911

34

Deleting the First Node from a List

struct node *delete first node(struct node *head)
if (head == NULL) {
return head;

}

struct node *temporary = head;
head = head->next;

free (temporary) ;

return head;

COMP1511/COMP1911

{

35

Delete All Nodes the wrong way

What is wrong with this code?

// Delete all nodes from a given list
void delete all nodes(struct node *head) ({
struct node *current = head;
while (current !'= NULL) {
free (current) ;

current = current->next;

COMP1511/COMP1911

36

Delete All Nodes the wrong way

Don’t forget that if you free memory, you can’t use it!

// Delete all nodes from a given list
void delete all nodes(struct node *head) ({
struct node *current = head;
while (current !'= NULL) {

free (current) ;
// Accessing memory that has just been freed

current =|current—>next;|

}

COMP1511/COMP1911

37

Delete All Nodes the Correct Way
Let’s test it and check it with dcc —leak-check

// Delete all nodes from a given list
void delete all nodes(struct node *head) ({
struct node *current = head;
while (current !'= NULL) {
head = head->next;
free (current) ;

current = head;

}

COMP1511/COMP1911

38

Search and Delete

o We want to search for a node with a particular value in it and
then delete it

e Where could the item be
o Nowhere - if it is an empty list or the list does not contain the

value

At the head (deleting the first node in the list)

Between any 2 nodes in the list

At the tail (deleting the last node in the list)

There could be multiple occurrences! For now let’s just consider
the first occurrence

O O O O

COMP1511/COMP1911

39

Search and delete: between 2 nodes

e To delete a node we need to link the previous node to the next

node
o |If we want to delete the node with 42, we need to find the node
before it
We need a pointer
to this node
head ——| 13 o 17 5 |~ NULL

COMP1511/COMP1911 40

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

}

previous = current
NULL l
head ——| 13 |—- 17 5 | NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

L

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

i

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: between 2 nodes

// Approach 1l: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search key) ({
previous = current;

current = current->next;

previous current

|

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: Approach 1

Then we need to connect current node to the one after the one we
are deleting.

previous current

s S
/ \
/ \

head — | 13 4 17 £X “» 5 | . NULL

COMP1511/COMP1911

Search and delete: Approach 1

Then we need to connect current node to the one after the one we
are deleting.

previous->next = current->next;

previous current

head ——| 13 - 17 /z1|_£|—\k» 5 |——» NULL

COMP1511/COMP1911

Search and delete: Approach 1

Now we can free the node we want to delete

free (current) ;

head ——

COMP1511/COMP1911

13

previous current

|

- 17

e

— NULL

48

Search and delete Approach 2: general case

// BApproach 2: Just use 1 pointer to traverse

// but check the next node

struct node *current = head;

while (current->next !'= NULL &&
current->next->data !'= search key) {

current = current->next;

current

|

head ——| 13 4 17 5 |—— NULL

COMP1511/COMP1911

Search and delete: Approach 2

Then we need to connect current node to the one after the one we
are deleting. But we still need a pointer to the node we want to free.
How can we do that?

current
l //""\\
// \\
head —~| 13 4 17 E > 5 |- NULL

COMP1511/COMP1911

Search and delete: Approach 2

struct node *temporary = current->next;

head ——

COMP1511/COMP1911

13

current

|

- 17

temporary

— NULL

51

Search and delete: Approach 2

struct node *temporary = current->next;

current->next = temporary->next;

current temporary

W

head —| 13 - 17 42 9

— NULL

COMP1511/COMP1911

52

Search and delete: Approach 2

Now we can free the node we want to delete

free (temporary) ;

head ——

COMP1511/COMP1911

13

|

current temporary

17

S

— NULL

53

Coding

Let's code up both of these approaches.
Let's extend our first approach to delete all occurrences.

COMP1511/COMP1911

54

Feedback Please!

Your feedback is valuable!

If you have any feedback from -
today's lecture, please follow the

link below or use the QR Code. I

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

i

https://forms.office.com/r/ TDMCcARMMb

COMP1511/COMP1911 55

What did we learn today?

e Recap
e Inserting at any position

e Deleting elements
o First node
o All nodes
o Search and delete

COMP1511/COMP1911

56

Next Lecture

o Linked Lists a Larger Application.
o Linked Lists as fields in other structs
o Linked Lists with more complex data (other than just int)
o Multi-file Linked Lists
o Helpful for assignment 2

COMP1511/COMP1911

57

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

58

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

