
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 8 Lecture 1

Linked Lists
Insertion

1

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs 1511/25T3/code/week_8/

Link to Week 8 Live Lecture Code

2

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_8/

COMP1511/COMP1911

Week 8 Lab Exam
● In your lab time
● To prepare you for the format of the final invigilated exam
● Please attend your week 8 lab as scheduled

○ Online classes have been given ticketing links for face to face
classes for this week

● Worth 1 mark
● Email course account if for some reason you are sick or can’t

attend on the day

3

COMP1511/COMP1911

Assignment Due Date:
Friday Week 10 5pm

Don’t leave it until the last minute!
Help sessions will be very busy the week before the deadline!!!!!!!!

Make sure to only submit work that is your own!

Assignment 2: CS Festival 🎷🎵🎸🎶🎹🎤

4

COMP1511/COMP1911

Revision Sessions This Week
Thursday 2-4pm (Online on Microsoft Teams)

Please sign up for the revision sessions and vote for
your favourite topic on the forum.

5

COMP1511/COMP1911

Last Lecture (Wednesday Catch up Lecture)
● Linked List Basics
● Creating nodes
● Printing a List
● Inserting nodes

○ At beginning

6

COMP1511/COMP1911

Today’s Lecture
● Recap:

○ List basics
○ Inserting at the front of a list
○ Print List

● Insert at Tail
● Inserting in the middle of a list

○ Finding the length of the list
● Inserting anywhere in the list

7

COMP1511/COMP1911

Linked List Recap

8

COMP1511/COMP1911

● We say it is sequential as we
have to start at the
beginning of the list and
traverse to access items

● We can’t jump to a particular
item like we can with array
indexes

Linked Lists in Memory

9

0x20
0x24
0x28 13
0x2c 0x5c
0x30
0x34
0x38
0x3c 5
0x40 NULL

0x44
0x48 42
0x4c 0x3c
0x50
0x54
0x58
0x5c 17
0x60 0x48
0x64

list

COMP1511/COMP1911

● We can store our data and
a pointer together in a struct.

● We often call these nodes
when working with linked lists

Linked List Nodes

10

0x20
0x24
0x28 13
0x2c 0x5c
0x30
0x34
0x38
0x3c 5
0x40 NULL

0x44
0x48 42
0x4c 0x3c
0x50
0x54
0x58
0x5c 17
0x60 0x48
0x64

struct node {

 int data;

 struct node *next;

};

list

COMP1511/COMP1911

The list variable is a pointer to
the first node in the list

Linked List Nodes

11

0x20
0x24
0x28 13
0x2c 0x5c
0x30
0x34
0x38
0x3c 5
0x40 NULL

0x44
0x48 42
0x4c 0x3c
0x50
0x54
0x58
0x5c 17
0x60 0x48
0x64

struct node *list;

struct node *list

struct node {

 int data;

 struct node *next;

};

COMP1511/COMP1911

Visualising Linked Lists

12

13

0x5c

17 42

0x28 0x5c 0x48

0x48 0x3c

5

0x3c

NULL

0x08
head = 0x28

COMP1511/COMP1911

An empty List in C

13

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = NULL

0x08

COMP1511/COMP1911

Creating a List with 1 Node in C

14

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = malloc(sizeof(struct node));

head->data = 21;
head->next = NULL;

21

0x88

head = 0x88

0x08

NULL

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

15

21

0x88

NULL

99

???

0x84

new_node = 0x84

0x16

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 99;
new_node->next = ???;

head = 0x88

0x08

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

16

21

0x88

NULL

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 99;
new_node->next = head;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x88

0x08

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

17

21

0x88

NULL

head = new_node;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x84

0x08

COMP1511/COMP1911

// Creates and returns a new node with given data and
// next pointer. returns NULL if memory allocation fails.
struct node *create_node(int data, struct node *next){

 struct node *new_node = malloc(sizeof(struct node));

 if (new_node == NULL) {

 return NULL;

 }

 new_node->data = data;

 new_node->next = next;

 return new_node;

}

Create Node Function

18

COMP1511/COMP1911

Traversing a List

19

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

COMP1511/COMP1911

Traversing a List

20

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

COMP1511/COMP1911

Traversing a List

21

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

struct node *current = head;

current = 0x28

COMP1511/COMP1911

Traversing a List

22

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along

current = 0x28

COMP1511/COMP1911

Traversing a List

23

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x80

COMP1511/COMP1911

Traversing a List

24

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x60

COMP1511/COMP1911

Traversing a List

25

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x48

COMP1511/COMP1911

Traversing a List

26

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

We should stop now that current == NULL

COMP1511/COMP1911

// Traversing the list and printing the contents (data)

// from each node

void print_list(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 printf("%d ", current->data);

 current = current->next;

 }

 printf("\n");

}

Printing a list

27

COMP1511/COMP1911

Do I always have to add nodes at the
beginning of my list?

28

COMP1511/COMP1911

Where can I insert in a linked list?
● At the head (what we just did!)
● Between any two nodes that exist (later in this lecture!)
● After the tail as the last node (now!)

To insert a node at the end of the list we need to
● Find the last node in the list
● Connect the last node in the list to the new node

Inserting at the tail (end) of a list

29

COMP1511/COMP1911

If we stop traversing the list when
current == NULL
We go PAST the tail of the list

Finding the Tail of the list

30

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

COMP1511/COMP1911

We want to stop at the last node
How can we tell if we are at the last node?

Finding the Tail of the list

31

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

COMP1511/COMP1911

We want to stop when
current->next == NULL

Finding the Tail of the list

32

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

COMP1511/COMP1911

Then we can link the last node to
the new node

Insert at the Tail of the list

33

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72

COMP1511/COMP1911

current->next = new_node;

Insert at the Tail of the list

34

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

0x72

0x15
head = 0x28

current = 0x48

3

0x72

NULL

new_node = 0x72

COMP1511/COMP1911

// What valid input could cause this function to break?

void insert_at_tail(struct node *head, int data){

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

 current = current->next;

 }

 // Connect new node to the tail of the list

 struct node *new_node = create_node(data, NULL);

 current->next = new_node;

 }

Inserting at Tail (with a big bug)

35

COMP1511/COMP1911

It is always important to test your linked list functions with:
● An empty list
● A list with one node
● A list with more than one node

Our function only inserts at the end of the list. If we were writing a
function to insert anywhere into a list we would want to test

● Inserting at the beginning
● Inserting in the middle
● Inserting at the end

Linked List Test Cases

36

COMP1511/COMP1911

If we have an empty list

○ head == NULL;
○ so then current == NULL;
○ so current->next

will be dereferencing a NULL pointer and result in a run time error

Inserting At Tail Code Bug

37

void insert_at_tail(struct node *head, int data){

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

COMP1511/COMP1911

void insert_at_tail(struct node *head, int data){

 struct node *new_node = create_node(data, NULL);

 if (head == NULL) { // Special case for empty list

 head = new_node;

 } else {

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

 current = current->next;

 }

 // Connect new node to the tail of the list

 current->next = new_node;
 }
 }

Inserting at Tail (still with a bug)

38

COMP1511/COMP1911

The code no longer crashes!!!
But we still end up with an empty list when we use the function.
Why?

Inserting At Tail Code Bug

39

 int main(void) {

 struct node *head = NULL;

 insert_at_tail(head, 9);

 // local variable head is in main is still NULL

 return 0;

 }

COMP1511/COMP1911

We need to modify the prototype so it can return the head of the list
and we need to assign that return value to our local variable.

Fixing Inserting at Tail Code

40

struct node *insert_at_tail(struct node *head, int data);

int main(void) {

 struct node *head = NULL;

// local variable head has been updated :)

 head = insert_at_tail(head, 9);

 return 0;

 }

COMP1511/COMP1911

struct node *insert_at_tail(struct node *head, int data){

struct node *new_node = create_node(data, NULL);

 if (head == NULL) { // Special case for empty list

 head = new_node;

 } else {

 struct node *current = head;
 // Find the tail of the list
 while (current->next != NULL) {
 current = current->next;
 }
 // Connect new node to the tail of the list
 current->next = new_node;
 }
 return head;
 }

Inserting at Tail

41

COMP1511/COMP1911

We have looked at 2 special cases
● Inserting at the beginning of a list

○ Exercise: move that into its own function
● Inserting at the end of a list

Now we want to be able to insert anywhere. Lets try right in the
middle of the list!

Inserting Into a Linked List

42

COMP1511/COMP1911

Inserting in the Middle of the List

43

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

We want to insert a new node at position size/2, assuming positions

start at 0. In this case that is position 2

COMP1511/COMP1911

Inserting in the Middle of the List

44

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Use a counter and stop traversing when we get to the node before

the position we want to insert at (size/2 - 1). In this case position 1.

COMP1511/COMP1911

Inserting in the Middle of the List

45

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

struct node *current = head;

int counter = 0;

current = 0x28

COMP1511/COMP1911

Inserting in the Middle of the List

46

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

while (counter < size/2 - 1) {
 current = current->next;
 counter++;
}

COMP1511/COMP1911

Inserting in the Middle of the List

47

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

Now we want to connect our new node. It should come after the

current node, but before current->next

COMP1511/COMP1911

Inserting in the Middle of the List

48

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

9

???

0x5C

new_node = 0x5C

COMP1511/COMP1911

Inserting in the Middle of the List

49

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

9

0x60

0x5C

new_node = 0x5C

COMP1511/COMP1911

Inserting in the Middle of the List

50

13

0x80

17 42

0x28 0x80 0x60

0x5C 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

current->next = new_node; 9

0x60

0x5C

new_node = 0x5C

COMP1511/COMP1911 51

● What conditions will break this?
○ What happens if it is an empty list?
○ What happens if there is only 1 item in the list?
○ Anything else we should check?

● How can we modify our code to handle any of these situations
that break it?

Coding: Inserting in the Middle of the List

COMP1511/COMP1911 52

● How could we modify our code to write a function to insert at
any given index?
○ What extra cases do we need to check now?

Coding: Inserting at any position in List

COMP1511/COMP1911

● Remember, you should always consider and make sure your
solution works:

● Inserting into an empty list
● Inserting at the head of the list
● Inserting after the first node if there is only one node
● Inserting somewhere in the middle
● Inserting at the end of the list

 Tip: Draw a diagram!!!! It will allow you to easily see what are some
potential pitfalls

Inserting Into a Linked List Test Cases

53

COMP1511/COMP1911 54

● Recap Linked Lists Basics
● Inserting an item at the tail of a list (linked_list_insertion.c)
● Inserting in the middle of a list
● Inserting at a given position in a list

Next lecture:
● Deleting/freeing nodes in a list
● Lists containing other types of data

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

55

https://forms.office.com/r/pXdtYN4xgE

COMP1511/COMP1911 56

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

