COMP1511/1911 Programming Fundamentals

Week 8 Lecture 1

Linked Lists
Insertion

COMP1511/COMP1911

Link to Week 8 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs 1511/25T3/code/week_8/

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_8/

Week 8 Lab Exam

e Inyourlab time
o To prepare you for the format of the final invigilated exam

o Please attend your week 8 lab as scheduled
o Online classes have been given ticketing links for face to face
classes for this week

e Worth 1 mark
e Email course account if for some reason you are sick or can't
attend on the day

COMP1511/COMP1911

Assignment 2: CS Festival =/~ [& 0T &2

Assignment Due Date:
Friday Week 10 5pm

Don't leave it until the last minute!

Make sure to only submit work that is your own!

COMP1511/COMP1911

Revision Sessions This Week

Thursday 2-4pm (Online on Microsoft Teams)

Please sign up for the revision sessions and vote for
your favourite topic on the forum.

COMP1511/COMP1911

Last Lecture (Wednesday Catch up Lecture)

o Linked List Basics
o Creating nodes
e Printing a List
e Inserting nodes
o At beginning

COMP1511/COMP1911

Today's Lecture

e Recap:
o List basics
o Inserting at the front of a list
o Print List

e Insert at Tail

e Inserting in the middle of a list
o Finding the length of the list
e Inserting anywhere in the list

COMP1511/COMP1911

Linked List Recap

COMP1511/COMP1911

Linked Lists in Memory

e We say it is sequential as we
have to start at the
beginning of the list and
traverse to access items

e We can't jump to a particular
item like we can with array
indexes

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LOX58

Ox5¢c | 17
0x60 | 0x48
0x64

Linked List Nodes

e We can store our data and
a pointer together in a struct.

e We often call these nodes
when working with linked lists

struct node {
int data;

struct node *next;

};

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LX58

Ox5c | 17
0x60 | Ox48

0x64

10

Linked List Nodes

The list variable is a pointer to
the first node in the list

struct node *list;

struct node {
int data;

struct node *next;

};

COMP1511/COMP1911

struct node *1list

0x20 /
0x24 |
0x28 | 13
0x2c | Ox5¢c
0x30

0x34

0x38

0x3c 5
0x40 | NULL

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LX58

Ox5c | 17
0x60 | Ox48

0x64

11

Visualising Linked Lists

0x08
head = 0x28

0x28 0x5c 0x48 0x3c

13

///(17 //’I 42 ///’

0x5c 0x48 0x3c NULL

COMP1511/COMP1911

An empty ListinC

struct node {
int data;

struct node *next;
};

struct node *head = NULL;

COMP1511/COMP1911

0x08

head = NULL

13

Creating a List with 1 Node in C

struct node {
int data;

struct node *next;
};

struct node *head = NULL;

head = malloc(sizeof (struct node)) ;

head->data = 21;
head->next = NULL;

COMP1511/COMP1911

0x08

0x88

head =

0x88

21

NULL

14

Connect 2 nodes: Add new node to the start

0x84 0x08 0x88
99 head = 0x88 |—» 21
299 NULL
O0x1l6
new=pode = 0x84

struct node *new node = malloc(sizeof (struct node)) ;

new_node—>data = 99;
new_node—>next = ??27?;

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

0x08

head = 0x88 |—»

/

0x84
99
0x88
0x16
new=pode = (0x84

0x88

21

NULL

struct node *new node = malloc(sizeof (struct node)) ;

new_node—>data = 99;
new node->next = head;

COMP1511/COMP1911

16

Connect 2 nodes: Add new node to the start

0x08 0x84

0x88
head = 0x84 |—» 99 21
O0x1l6
new=pode = (0x84

head = new_node;

COMP1511/COMP1911

Create Node Function

// Creates and returns a new node with given data and
// next pointer. returns NULL if memory allocation fails.
struct node *create node(int data, struct node *next) {

struct node *new node = malloc(sizeof (struct node)) ;
if (new_node == NULL) ({
return NULL;
}
new node->data = data;
new node->next = next;

return new_node;

}

COMP1511/COMP1911

Traversing a List

0x15

head =

0x28

0x28

13

0x80

//1

COMP1511/COMP1911

0x80

0x60

17

0x48

42

0x60

0x48

NULL

19

Traversing a List

0x15

head =

0x28

0x28

13

0x80

Set a pointer to the beginning of the list

//1

COMP1511/COMP1911

0x80

17

0x60

0x60

//ﬂ

42

0x48

0x48

¥

NULL

20

Traversing a List

0x15

head =

0x28

0x28

0x80

13

0x80

%

17

?

0x60

0x60

//ﬂ

current

0x28‘

COMP1511/COMP1911

42

0x48

struct node *current = head;

Set a pointer to the beginning of the list

0x48

¥

NULL

21

Traversing a List

0x15

head =

0x28

0x28

0x80

13

0x80

%

17

?

0x60

0x60

//ﬂ

current

0x28‘

COMP1511/COMP1911

42

0x48

Now we need to move current along

0x48

¥

NULL

22

Traversing a List

0x15

head =

0x28

0x28

Now we need to move current along
current = current->next;

0x80

13

0x80

0x60

//1’ 17

0x60

//f

COMP1511/COMP1911

?

42

0x48

0x48

¥

‘current

0x80 |

NULL

23

Traversing a List

0x15

head =

0x28

0x28

13

0x80

Now we need to move current along
current = current->next;

COMP1511/COMP1911

0x80 0x60 0x48
/ 17 / 42 / 5
0x60 [0x48 NULL
‘current = 0x60‘

24

Traversing a List

0x15 Now we need to move current along
head = 0x28 current = current->next;
0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [0x48 NULL
‘current = 0x48‘

COMP1511/COMP1911 25

Traversing a List

0x15 We should stop now that current == NULL
head = 0x28

0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [0x48 NULL

‘current = NULL

COMP1511/COMP1911 26

Printing a list

// Traversing the list and printing the contents (data)
// from each node
void print list(struct node *head) {
struct node *current = head;
while (current '= NULL) {
printf ("%d ", current->data);
current = current->next;

}
printf ("\n") ;

COMP1511/COMP1911

27

Do | always have to add nodes at the
beginning of my list?

COMP1511/COMP1911

28

Inserting at the tail (end) of a list

Where can | insert in a linked list?
e Atthe head (what we just did!)
e Between any two nodes that exist (later in this lecture!)
o After the tail as the last node (now!)

To insert a node at the end of the list we need to

e Find the last node in the list
e Connect the last node in the list to the new node

COMP1511/COMP1911

29

Finding the Tail of the list

0x15 If we stop traversing the list when
head = 0x28 current == NULL
We go PAST the tail of the list
0x28 0x80 0x60 0x48
13 / 17 / 42 / 5
0x80 0x60 0x48 NULL

‘current = NULL

COMP1511/COMP1911 30

Finding the Tail of the list

0x15

head = 0x28

0x28

13

0x80

We want to stop at the last node
How can we tell if we are at the last node?

%

COMP1511/COMP1911

0x80 0x60 0x48

17 / 42 / 5

0x60 0x48 NULL
A

|current = 0x48 |

31

Finding the Tail of the list

0x15 We want to stop when
head = 0x28 current->next == NULL
0x28 0x80 0x60 0x48
13 / 17 / 42 / 5
0x80 0x60 0x48 NULL

A

|current = 0x48 |

COMP1511/COMP1911

Insert at the Tail of the list

0x15

head = 0x28

0x28

13

0x80

%

COMP1511/COMP1911

Then we can link the last node to Ox72
the new node /4 5
new_pode = 0x72
0x80 0x60 0x48 NULL
17 / 42 / 5
0x60 0x48 NULL
T}

|current

0x48

33

Insert at the Tail of the list

0x15

head = 0x28

0x28

13

0x80

0x80

%

COMP1511/COMP1911

17

0x60

%

current->next = new node; 0x72
/{ 3
new_pode = 0x72
0x60 0x48 NULL
42 //ﬂ 5
0x48 0x72
4

|current

0x48

34

Inserting at Tail (with a big bug)

// What valid input could cause this function to break?
void insert at tail (struct node *head, int data) {
struct node *current = head;
// Find the tail of the list
while (current->next !'= NULL) {

current = current->next;

}
// Connect new node to the tail of the list

struct node *new node = create node(data, NULL);

current->next = new_node;

}

COMP1511/COMP1911

35

Linked List Test Cases

It is always important to test your linked list functions with:
e Anempty list
o A list with one node
o A list with more than one node

Our function only inserts at the end of the list. If we were writing a
function to insert anywhere into a list we would want to test

e Inserting at the beginning

e Inserting in the middle

e Inserting at the end

COMP1511/COMP1911

36

Inserting At Tail Code Bug

If we have an empty list

o head == NULL;
o so then current == NULL;

O SO current->next
will be dereferencing a NULL pointer and result in a run time error

void insert at tail (struct node *head, int data) {
struct node *current = head;
// Find the tail of the list
while Icurrent—>nextl!= NULL) {

COMP1511/COMP1911

37

Inserting at Tail (still with a bug)

void insert at tail (struct node *head, int data) {

struct node *new node = create node(data, NULL);
if (head == NULL) { // Special case for empty list

head = new _node;
} else {

struct node *current = head;

// Find the tail of the list

while (current->next != NULL) {

current = current->next;
}
// Connect new node to the tail of the list

current->next = new_node;

}
COMP1511/COMP1911

38

Inserting At Tail Code Bug

The code no longer crashes!!!
But we still end up with an empty list when we use the function.

Why?

int main(void) {
struct node *head = NULL;
insert at tail (head, 9);
// local variable head is in main is still NULL

return 0O;

COMP1511/COMP1911

39

Fixing Inserting at Tail Code

We need to modify the prototype so it can return the head of the list
and we need to assign that return value to our local variable.

struct node *insert at tail (struct node *head, int data);
int main(void) {

struct node *head = NULL;

// local variable head has been updated :)

head = insert at tail (head, 9);

return O;

}

COMP1511/COMP1911 40

Inserting at Talil

struct node *insert at tail (struct node *head, int data) {
struct node *new node = create node(data, NULL) ;
if (head == NULL) { // Special case for empty list
head = new _node;
} else {

struct node *current = head;
// Find the tail of the list
while (current->next != NULL) {
current = current->next;
}
// Connect new node to the tail of the 1list
current->next = new _node;

}

return head;
}
COMP1511/COMP1911

41

Inserting Into a Linked List

We have looked at 2 special cases

e Inserting at the beginning of a list
o Exercise: move that into its own function

e Inserting at the end of a list

Now we want to be able to insert anywhere. Lets try right in the
middle of the list!

COMP1511/COMP1911

42

Inserting in the Middle of the List

We want to insert a new node at position size/2, assuming positions

start at 0. In this case that is position 2

0x15
head = 0x28

(0x28 0x80 0x60 0x48
13 / 17 42 5
/ // /

0x80 0x60 0x48 NULL

COMP1511/COMP1911

Inserting in the Middle of the List

Use a counter and stop traversing when we get to the node before

the position we want to insert at (size/2 - 1). In this case position 1.

0x15
head = 0x28

(0x28 0x80 0x60 0x48
13 / 17 42 5
/ // /

0x80 0x60 0x48 NULL

COMP1511/COMP1911

Inserting in the Middle of the List

struct node *current = head;

int counter = 0;

0x15
head = 0x28

<:/}0x28 0x80 0x60 0x48
13 17 42 5

P

0x80 0x60 0x48 NULL

3

current = 0x28 I

COMP1511/COMP1911

Inserting in the Middle of the List

while (counter < size/2 - 1) {
current = current->next;
counter++;

0x15 }
head = 0x28

(0x28 0x80 0x60 0x48
13 /4 17 42 5
/ ///)’ ///)’

0x80 0x60 0x48 NULL
[

Icurrent = 0x80 I

COMP1511/COMP1911 46

Inserting in the Middle of the List

Now we want to connect our new node. It should come after the

current node, but before current->next

0x15
head = 0x28

(0x28 0x80 0x60 0x48
13 / 17 42 5
/ ///' ///'

0x80 0x60 0x48 NULL

3

Icurrent = 0x80 I

COMP1511/COMP1911

Inserting in the Middle of the List

0x5C
9]\ new_node = 0x5C
0x15 —
head = 0x28 ??7?
(0x28 0x80 0x60 0x48
13 / 17 / 42 5
/ //)'
0x80 0x60 0x48 NULL
3

Icurrent = 0x80 I

COMP1511/COMP1911

Inserting in the Middle of the List

new_node->next = current->next; 0x5C
)]\ new node = 0x5C
0x15 —
head = 0x28 0x60
(0x28 0x80 N 0x60 0x48
13 / 17 / 42 5
/ § /
0x80 0x60 0x48 NULL

Icurrent = 0x80 I

COMP1511/COMP1911

49

Inserting in the Middle of the List

new_pode—>next = current->next;

current->next = new_node;

0x15
head = 0x28
(0x28 0x80
13 //(17
/]
0x80 0x5C
Icurrent = 0x80

COMP1511/COMP1911

0x5C
9]\ new=node = 0x5C
0x60
\ 0x60 0x48
42 ///’ 5
0x48 NULL

50

Coding: Inserting in the Middle of the List

e What conditions will break this?
o What happens if it is an empty list?
o What happens if there is only 1 item in the list?
o Anything else we should check?
o How can we modify our code to handle any of these situations

that break it?

COMP1511/COMP1911

51

Coding: Inserting at any position in List

e How could we modify our code to write a function to insert at
any given index?
o What extra cases do we need to check now?

COMP1511/COMP1911

52

Inserting Into a Linked List Test Cases

e Remember, you should always consider and make sure your
solution works:
e Inserting into an empty list
e Inserting at the head of the list
e Inserting after the first node if there is only one node
e Inserting somewhere in the middle
e Inserting at the end of the list

Tip: Draw a diagram!!!! It will allow you to easily see what are some
potential pitfalls

COMP1511/COMP1911 53

What did we learn today?

e Recap Linked Lists Basics

e Inserting an item at the tail of a list (linked_list_insertion.c)
e Inserting in the middle of a list

e Inserting at a given position in a list

Next lecture:

e Deleting/freeing nodes in a list
e Lists containing other types of data

COMP1511/COMP1911

54

Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/pXdtYN4xgE

COMP1511/COMP1911

55

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

56

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

