COMP1511/1911 Programming Fundamentals

Week 7 Lecture 2

Linked Lists

COMP1511/COMP1911



Link to Week 7 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_7/

COMP1511/COMP1911


https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_7/

Next Week: Week 8 Lab Exam

e Inyourlab time
o To prepare you for the format of the final invigilated exam
o Please attend your week 8 lab as scheduled
o Online classes will get more information ASAP
e Worth 1 lab mark
o Email course account if for some reason you are sick or can't attend

on the day

COMP1511/COMP1911



Week 8 Lab Marks

e 0.517 dot

e 0.52dot

e 0.53dot

e 1 mark lab exam - attempt and submit a solution for at least 1
guestion

o Number of questions
o 4
o 2 array hurdles
o 2 debugging

COMP1511/COMP1911



Next Week: Week 8 Revision Sessions

e Revision sessions in week 8
e Keep eye on forum for time, location, bookings and voting

COMP1511/COMP1911



Assignment 2

Time: Thursday 9am JUSTIFINIS

ABOUT QJAI(E I:IAP

Assignment Due Date:
Friday Week 10 5pm

Don't leave it until the last minute!
Help sessions will be very busy the

COMP1511/COMP1911



Assignment 2

e Itis an individual assignment

o Aims of the assignment

Work with a larger problem and codebase

Work with multiple C files

Problem solve with linked lists

Practice using strings

Being a responsible heap user (free your malloced memory)
e You will be assessed on style! 20% of your mark

e COMP1911 only need to complete up to and including stage 3.3

O O O O O

COMP1511/COMP1911



Assignment 2 Linked List Warning

You MUST use linked linked lists.
e You can't change the linked lists into arrays and just do it with

e You will get 0 performance in the assignment if you do

COMP1511/COMP1911



Last Lecture

o Pointers basics recap

e Pointers and arrays

e Memory and the stack

e Dynamic Memory, malloc and the heap
o Multi-file projects

COMP1511/COMP1911



Today's Lecture: Linked Lists

e Why are we learning linked lists?
e Whatis a linked list?

e Inserting at the head

e Traversing a linked list

e Inserting at the tail

But first a quick recap of malloc and
a quick look at realloc

COMP1511/COMP1911




Using malloc

o multiply the number of elements you need
by the sizeof the type of the element to
work out how many bytes you want malloc
to give you

o malloc will return a pointer to the starting

address of the chunk of memory it

allocated

int *numbers = malloc (10 * sizeof(int));

COMP1511/COMP1911 11



Putting it all together

// create array
int *data = malloc(num elements *sizeof(int))
// check malloc was successful

// Use the array somehow
// etc etc

// Free array when finished with array
free (data) ;

Note: You can check for memory leaks using dcc with the flag
dcc --leak-check

COMP1511/COMP1911

12



The realloc function

o What happens if this array wants to actually grow after you
have filled it up?

e We can use realloc on a dynamically created array

// Ask malloc for enough memory for an array of 10 ints

int *numbers = malloc (10 * sizeof(int));

// Decide later we need enough for 20 ints

// It will make the array bigger, without destroying the
// contents

numbers = realloc (numbers, 20 * sizeof(int));

COMP1511/COMP1911



Realloc coding example

realloc_array.c

COMP1511/COMP1911

14



Exercise: return pointer to struct

struct person ({
char name[MAX LEN];

int age;

I 2

// return a pointer to a person struct with name and age
struct person *create person(char *name, int age);

void print person(struct person the person);

Write the functions and write a main function to
1. Call the first function with “Tina Arena” and age 58

2. Call the function to print the person’s details

COMP1511/COMP1911

15



COMP1511/COMP1911

Linked Lists

16



Linked Lists

e An alternative to using an array to store collections of data

o Arrays are amazing and we won't be forgetting about them

o This is just another option!

e Linked Lists are suitable for sequential data:
o playlists of songs
o image galleries
o web browser history
e Why would we want to use a linked list instead of an array?

COMP1511/COMP1911

17



Array Advantages

e Store collections of data in contiguous blocks of memory
e Great for sequential access or random access
e |tis easytoinsert or delete items at the end

COMP1511/COMP1911

18



Array Disadvantages

e Maessy and inefficient for inserting or deleting in the middle

e E.g. How can we insert an item at or delete from index 1 in the
array below?

COMP1511/COMP1911

19



Array Disadvantages

We would need to move all the subsequent data along to

e make room to insert an item at index 1
e remove the gap if we deleted an item at index 1

COMP1511/COMP1911

20



Array Disadvantages

How can we insert an item into the array below?

e With a static array we can't!
e With a dynamic array we can use realloc
o How much bigger do we make it? Just 1 bigger? double the size?

COMP1511/COMP1911

21



Linked List Advantages

e They are dynamic structures

o They grow and shrink as needed
e They don't need contiguous memory like an array
e Insert or delete items anywhere in the list

o by modifying one or two pointers
o without moving existing data

COMP1511/COMP1911

22



Linked List Disadvantages

e Not good for random access (=
o You have to traverse from the beginning of the list
e Extra overhead of storing a pointer for each data item

COMP1511/COMP1911

23



Arrays in Memory

int array/[]

‘

0x20

0x24

0x28

13

Ox2c

17

0x30

42

0x34

0x38

Ox3c

0x40

COMP1511/COMP1911

{13, 17, 42, 5};

e The array name gives us the address of the
beginning of the chunk of memory

e Arrays are stored contiguously which allows us to

use indexes and make random access quick and
easy

24



Arrays vs Linked Lists in Memory

int array/[]

|

0x20

0x24

0x28

13

0x2c

17

0x30

42

0x34

0x38

0Ox3c

0x40

COMP1511/COMP1911

{13,

e Linked list datais

17,

42,

5},

not contiguous
e |[tis scattered

throughout

memory.

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44

0x48

42

Ox4c

Ox3c

0x50

0x54

0x58

0Ox5c

17

0x60

0x48

0x64

25



Linked Lists in Memory

e You need a pointer to the first
piece of data in the list

e And for every piece of data you
store in the list you need to
store a link (pointer containing
the address) to the next item in
the list.

e Like a scavenger hunt.

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

0x5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44

0x48

42

Ox4c

Ox3c

0x50

0x54

0x58

0Ox5c

17

0x60

0x48

0x64

26



Linked Lists in Memory

e You need a pointer to the first
piece of data in the list

e And for every piece of data you
store in the list you need to
store a link (pointer containing
the address) to the next item in
the list.

e Like a scavenger hunt.

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44
0x48 | 42
Ox4c | Ox3c
0x50
0x54
0x58
Ox5c | 17
0x60 | 0x48

0x64

27



Linked Lists in Memory

e You need a pointer to the first
piece of data in the list

e And for every piece of data you
store in the list you need to
store a link (pointer containing
the address) to the next item in
the list.

e Like a scavenger hunt.

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44
0x48 | 42
Ox4c | 0x3c
0x50
0x54
0x58
Ox5c | 17
0x60 | Ox48

0x64

28



Linked Lists in Memory

e When the value of the pointer
to the next piece of data is
NULL you have reached the
end of the list.

e Congratulations!

You have just traversed your
first linked list.

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LX58

Ox5c | 17
0x60 | Ox48

0x64

29



Linked Lists in Memory

e We say it is sequential as we
have to start at the
beginning of the list and
traverse to access items

e We can't jump to a particular
item like we can with array
indexes

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LOX58

Ox5¢c | 17
0x60 | 0x48
0x64

30



Linked List Nodes

What type in C would allow us to
store both the

e int data and also the

e address of the next item in the
list?

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

0x44

0x48 | 42 |
Ox4c | Ox3c
0x50 |~
0x54"

LOX58

Ox5¢c | 17
0x60 | 0x48
0x64

31



Linked List Nodes

e We can store our data and
a pointer together in a struct.

e We often call these nodes
when working with linked lists

struct node {
int data;

struct node *next;

};

COMP1511/COMP1911

0x20

0x24

0x28

13

0Ox2c

Ox5c

0x30

0x34

0x38

0Ox3c

0x40

NULL

list

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LX58

Ox5c | 17
0x60 | Ox48

0x64

32



Linked List Nodes

The list variable is a pointer to
the first node in the list

struct node *list;

struct node {
int data;

struct node *next;

};

COMP1511/COMP1911

struct node *1list

0x20 /
0x24 |
0x28 | 13
0x2c | Ox5¢c
0x30

0x34

0x38

0x3c 5
0x40 | NULL

0x44

0x48 | 42
Ox4c | Ox3c
0x50 |~
0x54"

LX58

Ox5c | 17
0x60 | Ox48

0x64

33



Linked List Nodes

The list variable is a pointer to
the first node in the list

struct node *list;

struct node {
int data;

struct node *next;

};

COMP1511/COMP1911

Each node has some data

o Inthis caseitis one int
but it could be whatever
type of data you need

o Later we will see
different types of data in
our linked lists

Each node has a pointer to

the next node (of the same

data type)

34



Visualising Linked Lists

pointer to the first node in the list

(we often use the variable name head instead of list)

node
int data
struct
node *
next
—

COMP1511/COMP1911

node
—

int data

struct

node *
next

node

int data

NULL

35



Visualising Linked Lists

0x08
head = 0x28

0x28 0x5c 0x48 0x3c

13

///( 17 //’I 42 ///’

0x5c 0x48 0x3c NULL

COMP1511/COMP1911



Creating a linked list

Let's write the code to create a linked list with nothing in it.

struct node *head = NULL;

We can visualise it as follows

0x08

head = NULL

Hooray! Who said linked lists were difficult?

COMP1511/COMP1911

37



Creating a Node

We will be using malloc to create nodes on the heap.

e we want full control to be able to
o create new nodes whenever we need to
o free them whenever we are finished with them

Steps needed are:

1. malloc a struct node

2. set the data member in the node
3. set the pointer to the next node

COMP1511/COMP1911

38



Creating a List with 1 Node in C

struct node {
int data;

struct node *next;

};

struct node *head = NULL;

COMP1511/COMP1911

0x08

head = NULL

39



Creating a List with 1 Node in C

struct node {
int data;

struct node *next;
};

struct node *head = NULL;

head = malloc(sizeof (struct node)) ;

COMP1511/COMP1911

0x08

0x88

head =

0x88

40



Creating a List with 1 Node in C

0x08

0x88

struct node {
head = 0x88

21

int data;

struct node *next;
};
struct node *head = NULL;

head = malloc(sizeof (struct node)) ;

head->data = 21;

COMP1511/COMP1911

41



Creating a List with 1 Node in C

struct node {
int data;

struct node *next;
};

struct node *head = NULL;

head = malloc(sizeof (struct node)) ;

head->data = 21;
head->next = NULL;

COMP1511/COMP1911

0x08

0x88

head =

0x88

21

NULL

42



Creating a List with 1 Node in C

0x08 0x88
head = 0x88 |——» 21
NULL

Now we have a linked list of size 1.
Let’s create another node.

Then we can connect it to the end or the beginning of this list!

COMP1511/COMP1911



Connect 2 nodes: Add new node to the end

0x08 0x88
head = 0x88 |——» 21
NULL

We will create a new node and link it to the end of this list
The end of the list is often called the tail.

COMP1511/COMP1911



Connect 2 nodes: Add new node to the end

head = 0x88 |——» 21 99
NULL NULL
O0x1l6
new=pode = (0x84

struct node *new node = malloc(sizeof (struct node)) ;

new_node—>data = 99;
new node->next = NULL;

COMP1511/COMP1911



Connect 2 nodes: Add new node to the end

head = 0x88 |——» 21 / 99
0x84 NULL
O0x1l6
new=pode = 0x84

// Connect(link) the head of the list to the new node
head->next = new node;

COMP1511/COMP1911



Connect 2 nodes: Add new node to the start

0x08

0x88

head = 0x88

21

NULL

We will create a new node and link it to the start of this list

The start of the list is often called the head.

COMP1511/COMP1911

47



Connect 2 nodes: Add new node to the start

0x84 0x08 0x88
99 head = 0x88 |—» 21
299 NULL
O0x1l6
new=pode = 0x84

struct node *new node = malloc(sizeof (struct node)) ;

new_node—>data = 99;
new_node—>next = ??27?;

COMP1511/COMP1911



Connect 2 nodes: Add new node to the start

0x08

head = 0x88 |—»

/

0x84
99
0x88
0x16
new=pode = (0x84

0x88

21

NULL

struct node *new node = malloc(sizeof (struct node)) ;

new_node—>data = 99;
new node->next = head;

COMP1511/COMP1911

49



Connect 2 nodes: Add new node to the start

0x08 0x84

0x88
head = 0x84 |—» 99 21
O0x1l6
new=pode = (0x84

head = new_node;

COMP1511/COMP1911



Coding Time

linked_list_intro .C
Create a list with 3 nodes
Print the contents of the first 3 nodes in the list

COMP1511/COMP1911

51



Code: Linked List Functions

list 1list functions.c
e How can we put our code to create a new node into a function?
e How could we use that to create a list by adding each node to
head using a loop?
o How would we print the whole list? Even if it had 1000s of
nodes?
e How could we add nodes to the end of the list? Even if it had
1000s of nodes?
o We want a function to free all nodes too. But let’s leave that
until another lecture...

COMP1511/COMP1911 52



Create Node Function

// Creates and returns a new node with given data and
// next pointer. returns NULL if memory allocation fails.
struct node *create node(int data, struct node *next) {

struct node *new node = malloc(sizeof (struct node)) ;
if (new_node == NULL) ({
return NULL;
}
new node->data = data;
new node->next = next;

return new_node;

}

COMP1511/COMP1911



Creating a Linked List Inserting at Head

// What would the contents of our list be?
int main(void) {
struct node *head = NULL;
for(int 1 = 0; i < 10; i++) {
struct node *new node = create node (i, head);
head = new node;

}

return O;

COMP1511/COMP1911

54



Printing a Node

How could | print the data from the first node in this linked list?

0x15
head = 0x28

0x28 0x80 0x60 0x48

‘13|//17/42/5

0x80 0x60 0x48 NULL

COMP1511/COMP1911



Printing a Node

How could | print the data from the first node in this linked list?

0x15 printf ("%d", head->data);

head = 0x28

0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [ 0x48 NULL

COMP1511/COMP1911



Printing a Linked Lists

How could | print data from each node in this linked list?

0x15

head =

0x28

0x28

0x80

13

0x60

17

0x80

42

0x60

COMP1511/COMP1911

0x48

0x48

¥

NULL

57



Traversing a list

Traversing a list means
o starting at the head of the list
e moving node by node until we get to the end of the list.

We often want to traverse a list, node by node to do things like
e print the data in each node in the list
o count the number of nodes in the list
o search for data in the list

COMP1511/COMP1911

58



Traversing a List

0x15

head =

0x28

0x28

13

0x80

//1

COMP1511/COMP1911

0x80

0x60

17

0x48

42

0x60

0x48

NULL

59



Traversing a List

0x15

head =

0x28

0x28

13

0x80

Set a pointer to the beginning of the list

//1

COMP1511/COMP1911

0x80

17

0x60

0x60

//ﬂ

42

0x48

0x48

¥

NULL

60



Traversing a List

0x15

head =

0x28

0x28

0x80

13

0x80

%

17

?

0x60

0x60

//ﬂ

current

0x28‘

COMP1511/COMP1911

42

0x48

struct node *current = head;

Set a pointer to the beginning of the list

0x48

¥

NULL

61



Traversing a List

0x15

head =

0x28

0x28

0x80

13

0x80

%

17

?

0x60

0x60

//ﬂ

current

0x28‘

COMP1511/COMP1911

42

0x48

Now we need to move current along

0x48

¥

NULL

62



Traversing a List

0x15

head =

0x28

0x28

Now we need to move current along
current = current->next;

0x80

13

0x80

0x60

//1’ 17

0x60

//f

COMP1511/COMP1911

?

42

0x48

0x48

¥

‘current

0x80 |

NULL

63



Traversing a List

0x15

head =

0x28

0x28

13

0x80

Now we need to move current along
current = current->next;

COMP1511/COMP1911

0x80 0x60 0x48
/ 17 / 42 / 5
0x60 [ 0x48 NULL
‘current = 0x60‘

64



Traversing a List

0x15 Now we need to move current along
head = 0x28 current = current->next;
0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [ 0x48 NULL
‘current = 0x48‘

COMP1511/COMP1911 65



Traversing a List

0x15 We should stop now that current == NULL
head = 0x28

0x28 0x80 0x60 0x48
‘ 13 | / 17 42 5
/ / /
0x80 0x60 [ 0x48 NULL

‘current = NULL

COMP1511/COMP1911 66



Printing a list

// Traversing the list and printing the contents (data)
// from each node
void print list(struct node *head) {
struct node *current = head;
while (current '= NULL) {
printf ("%d ", current->data);
current = current->next;

}
printf ("\n") ;

COMP1511/COMP1911

67



Inserting nodes in a linked list

Where can | insert in a linked list?
e Atthe head (what we just did!)
e Between any two nodes that exist (next lecture!)
o After the tail as the last node (next lecture!)

COMP1511/COMP1911

68



What did we learn today?

o Realloc (realloc_array.c)

e Lists Intro (linked_list_intro.c)

e Inserting nodes at the start of the list (linked_list_functions.c)
e Traversing a List

Next lecture:

e Inserting an element anywhere in the list!
o Deleting an element

e Lists containing other types of data

COMP1511/COMP1911

69



Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/InTz8WkdOvB

COMP1511/COMP1911

70



Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

71


https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

