COMP1511/1911 Programming Fundamentals

Week 7 Lecture 1

Pointers, the Heap and Dynamic
Arrays

COMP1511/COMP1911

Link to Week 7 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_7/

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_7/

This Week

Assignment 1 due today at 5pm

Remember to get support
e Help sessions

e Revision sessions

e Forum

COMP1511/COMP1911

Assignment 2

Release: Thursday 9am

COMP1511/COMP1911

Before Flex WeekKk...

Week 5 Lecture 1:
e Arrays of strings, Command Line arguments
e 2d Array of structs with enums programming example

Week 5 Lecture 2:
e Pointers

COMP1511/COMP1911

Today's Lecture

e Pointers recap

e Pointers

e Memory and the stack

e Dynamic Memory, malloc and the heap
o Multi-file Projects (if there is time)

COMP1511/COMP1911

Memory and Addresses

Memory

o Memory is effectively a gigantic array of bytes.
. . 0xFF4C
e Memory addresses are effectively an index to D

this array of bytes. OXFF48
e They are usually written in hexadecimal
e Real addresses on our system would be 8 OxFF44

bytes and look something like
o 0x7ffcaa98655¢c

OxFF40

COMP1511/COMP1911 7

The Address of Operator

e We can get the address of a variable using the

address of operator &

int x = 2;

// Print the address of x

// In this scenario it would print OxFF48
printf ("%p", &x);

COMP1511/COMP1911

Memory

EI OxFFAC

2

‘ OxFF48 ‘

OxFF44

OxFF40

Addresses

Memory

e We have seen the address of operator before
o We tell scanf the address of our variable so it
can go and put the data into the correct

memory location for us
o Like giving your address to pizza shop so they
know where to deliver your food to.

int y;
scanf ("%d", &y);

COMP1511/COMP1911

EI OxFFAC

OxFF48

OxFF44

OxFF40

Declaring a Pointer

o Pointers are variables that can store memory addresses of
variables

o To declare a pointer variable you specify what type the pointer
points to and use an asterisk to indicate it is a pointer. E.qg.

O type pointing to *pointer variable name;

int *number ptr;
double *real ptr;
char *my ptr;

struct person *student ptr;

COMP1511/COMP1911 10

Dereference operator

Memory
e The dereference operator is *
o This accesses the value at the address ‘ \ OxFFaC
that the pointer variable holds X > 5 OxFF48
int x = 2; y 99 OxFF44

int y = 99;

int *x ptr = &x; x_ptr—{ OXFF48 | oxFF40

// *x ptr will go to address

OxFF3C
// O0xFF48 and get the value 2
printf ("%d\n", *x ptr); //prints 2 OxFF38

COMP1511/COMP1911 11

Indirectly modify a variable

Memory

o We can use pointers to indirectly modify
. ‘ \ OxFF4C
variables
4

OxFF48

int x = 2;

int y = 99; y 99 OxFF44
int *x ptr = &x;

XFF4
// goes to address O0XFF48 and x_ptr— 0 8 | OxFF40

// sets the value to 7 oxFF3C
// x now has the wvalue 7!

COMP1511/COMP1911 12

recap_exercise.c What will this print out?

int x = 2;
5;

int y

int *ptrl = &y;
int *ptr2 = &x;

int z = *ptrl + *ptr2;
*ptr2 = z * 2;
printf ("%d %d %d %d %d\n", x, y, z, *ptrl, *ptr2);

ptrl = ptr2;
printf ("%d %d %d %d %d\n", x, y, z, *ptrl, *ptr2);

COMP1511/COMP1911

Pass By Value Recap: What will this print?

int main(void) {

2;

5;

printf ("%d %d\n", x, y);

int x

int y

update (x,y) ;

printf ("%d %d\n", x, y);
swap (x, y):;

printf ("%d %d\n", x, y);

return 0;

}

COMP1511/COMP1911

void update (int x, int y)
X =x + 1;
y=y - 1;

void swap(int x, int y) {
int tmp = x;
X =y,

y = tmp;

14

More about Memory: The Stack

High Address

stack
}-4

heap

global/static
variable

Low Address

COMP1511/COMP1911

Stack memory stores data about each

function your program calls.

When a function is called, data gets

pushed onto the stack such as

o local variables

o where to return to when the function
finishes

Once your function finishes, its data

including variables will automatically be

removed from the stack

15

More about Memory: The Stack

int main(void) {

COMP1511/COMP1911

16

More about Memory: The Stack

int main(void) {

int x = 2;

COMP1511/COMP1911

17

More about Memory: The Stack

int main(void) {
int x = 2;

int y = 5;

COMP1511/COMP1911

18

More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=2

1]

int y=5

rs
A

COMP1511/COMP1911

void update (int x, int y) {
x=x+ 1;
y=vy - 1L;

int main (void) {
int x = 2;
int y = 5;
update (x,y) ;

printf ("%d %d\n", x, y);

return 0;

19

More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=3

1]

int y=5

rs
A

COMP1511/COMP1911

void update (int x, int y) {

int

XxX=x <+ 1;

y=y - 1;

main (void) {

int x = 2;

int y = 5;

update (x,y) ;

printf ("%d %d\n", x,

return 0;

y);

20

More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=3

1]

int y=4

rs
A

COMP1511/COMP1911

void update (int x, int y) {
XxX=x <+ 1;
y=y - 1;
}
int main(void) {
int x = 2;
int y = 5;
update (x,y) ;
printf ("%d %d\n", x, y);

return 0;

21

More about Memory: The Stack

The Stack | void update (int x, int y) {
| : XxX=x <+ 1;
main()
y=y - 1;

intx =2 }

int main(void) {

i

inty=5

int x = 2;

int y = 5;

update (x,y) ;

printf ("$d %d\n", x, y);
return O;

}

2 and 5 get printed

COMP1511/COMP1911 22

More about Memory: The Stack

The Stack

COMP1511/COMP1911

void update (int x, int y) {
x=x+1;
y=y - 1;
}
int main(void) {
int x = 2;
int y = 5;
update (x,y) ;
printf ("$d %d\n", x, y);

return 0;

23

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);

update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
ky = *ky - 1;

}

COMP1511/COMP1911

To do this:

Our main function would
have to pass in the
addresses of x and y

Our update function would
need to change to

have pointer parameters
since pointers can store
addresses!

24

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
*y:*y—l;

}

COMP1511/COMP1911

=

The Stack

—~

main()

S
=
X
I

N

|

inty=5

|

|

update

int *x =

L]]

rs

25

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
*y = *y - 1;

}

COMP1511/COMP1911

=

The Stack

—~

main()

intx=3

|

inty=5

|

|

update

int *x =

L]]

int *y =

rs

26

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x 4+ 1;

*y =*ry - 1;
}

COMP1511/COMP1911

= |

The Stack

—~

main()

intx=3

|

inty=4

|

|

update

int *x =

L]]

int *y =

rs

27

Functions and Pointers

) _) The Stack |
int main(void) { r

main()

int x = 2;

int y = 5; intx=3

i

printf ("%$d %d\n", x, y); :
inty=4
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x 4+ 1;

*y = *y - 15

COMP1511/COMP1911 28

Now how can we modify swap?

int main (void) ({ void update (int *x, int *y) {
int x = 2; *x = *x + 1;
int y = 5; *y = *y - 1;
printf ("%d %d\n", x, y); }

update (&x, &y) ;

printf ("%d %d\n", x, y); void swap(int x, int y) {

swap (x, y): int tmp = x;
printf ("%d %d\n", x, y); X =y;
return O; y = tmp;

} }

COMP1511/COMP1911

Pointers to structs

void update (struct point p) { What will this do?
p.x=p.x + 1;

Py =p.y +1;

How can we fix it?

int main (void) {
struct point p;

p.x = 10;
P.y = 9;
update (p) ;

printf (" (%d,%d)\n", p.x, P.Y):;
}

COMP1511/COMP1911 30

Pointers to structs

struct point update(struct point p) {
p.x=p.x + 1;
Py =p.y + 1;
return p;
}
int main (void) {
struct point p;
p.-x = 10;
P.y = 9;
p = update (p) ;
printf (" (%d,%d)\n", p.x, P.Y):;
}

COMP1511/COMP1911

In this case we could
return the updated

copy!!

31

Pointers to structs

void update (struct point *p) {
p->x = p->x + 1;
p->y = p~>y + 1;

int main (void) {

struct point p;

p.-x = 10;
P.y = 9;
update (&p) ;

printf (" (%d,%d)\n", p.x, P.Y):;
}

COMP1511/COMP1911

We could also pass
in a pointer and
update the original

copy

32

Functions and Arrays

o When we pass an array into a function, the address of the start

of the array gets passed in by default!

o It does not send in a copy of all of the data

o Just a copy of the address of the first element - a pointer!

o This is why we can modify the contents of our arrays arguments

// This WILL modify the contents of the num array
void increment all(int nums[], int size) {
for (int i = 0; 1 < size; i++) {
nums[i] = nums[i] + 1;
}
}

COMP1511/COMP1911 33

Coding Demo Arrays and Pointers

array_arguments.c
arrays_addresses.c

COMP1511/COMP1911

34

Exercise: What will this print?

string_pointer_exercise.c

char s[] = "Pointers!!!";
char *sp = &s[1l];

printf ("%c\n", *sp);
printf ("%c\n", sp[0]);
printf ("%$c\n", sp[l]);
printf ("$s\n", sp);

COMP1511/COMP1911

35

Can we return a pointer from a function?

COMP1511/COMP1911

36

We can return Pointers from Functions
But we can’t do this? Why? And we can’t do this? Why?

int *f (void) { int *f (void) {
int x = 3; int numbers[] = {1, 2, 3};
return &x: return numbers;

} }

We can’t return the address of a local variable

Local variables live on the stack

When the function returns it does not exist any more!

COMP1511/COMP1911 37

The Heap

High Address

stack

heap

global/static
variable

Low Address

COMP1511/COMP1911

We would like to be able to create arrays
within functions and return them

We would also like to create arrays whose
sizes are not know until runtime

Can the heap allow us to do this?
o Yesl!l

38

The Heap

High Address

stack
}“{

heap

global/static
variable

Low Address

COMP1511/COMP1911

Unlike stack memory, heap memory is
allocated by the programmer

It won't be deallocated until it is explicitly
freed by the programmer

You now have the power to control memory
on the heap!

With power comes heaps of responsibility

39

The Heap: malloc

e malloc is short for memory allocate

e malloc lets us ask for a number of bytes of memory on the heap

e malloc returns

o a pointer to the chunk of memory or
o NULL if there is not enough memory left to give us
o You should always check for NULL in case.

e This allows us to dynamically create memory when we need it that
will last beyond the end of functions and until we say we don’t want it
anymore.

e You need to #include <stdlib.h>to use malloc

COMP1511/COMP1911 40

The NULL Pointer

e Sometimes we initialise our pointer variables with a special

value meaning that they don't point to anything yet.
o We use the special value NULL to do this

e You will get a run time error if you dereference a NULL pointer

int *my ptr = NULL;

// Dereferencing a NULL
// pointer will cause a
// run time error

printf ("$d\n", *my ptr);

COMP1511/COMP1911

int *my ptr = NULL;

// Check for NULL first if

// it might be NULL

if (my ptr != NULL) ({
printf ("$d\n", *my ptr);

41

sizeof Operator

o We should use the sizeof operator to help calculate the exact
number of bytes we need to malloc
o sizeof returns an unsigned long value

o longis a type like int that can stores larger numbers

o unsigned means that it only stores value >= 0
e We can use it to find the sizeof a type or a variable.

// See sizeof example.c for full program

int main(void) {
printf ("Size of an int: %lu bytes\n", sizeof (int));
printf ("Size of 10 ints: %1lu bytes\n", 10 * sizeof (int))

COMP1511/COMP1911

42

Using malloc

o multiply the number of elements you need
by the sizeof the type of the element to
work out how many bytes you want malloc
to give you

o malloc will return a pointer to the starting

address of the chunk of memory it

allocated

int *numbers = malloc (10 * sizeof(int));

COMP1511/COMP1911 43

Creating an array with malloc

#include <stdlib.h>

int main(void) {
int num elements;
scanf ("%d", &num elements);
// Size of array is determined by user at run time
int *data = malloc(num elements *sizeof(int))
// Check to see if malloc was successful
if (data == NULL) {
printf ("Out of memory\n");
return 1;

COMP1511/COMP1911

44

Using array created by malloc

e You can use array indexes as usual on arrays created with
malloc!
e You can pass them into functions whose inputs are arrays

e You can RETURN them from functions too!
o Because they were malloced so are on the heap!!!!

COMP1511/COMP1911

45

Using array created by malloc

// returns a malloced array that has been initialised
int *create_array(void) {

int num elements;

scanf ("%d", &num elements) ;

int *data = malloc(num elements *sizeof(int))

// error checking omitted for slide

for (int 1 = 0; i1 < num elements; i++) {
data[i] = 1i;

}

return data;

COMP1511/COMP1911

46

The free function

o The free function lets the system know you don't need chunk of
memory any more
e Every malloc needs a corresponding free
o If your program keeps calling malloc without corresponding free
calls, the program will use more and more memory. This is called
a memory leak.
o Thisis a big issue for long running programs
o Operating systems recover memory when the program ends

e Accessing memory after freeing or freeing it again causes
nasty bugs

COMP1511/COMP1911 47

Putting it all together

// create array
int *data = malloc(num elements *sizeof(int))
// check malloc was successful

// Use the array somehow
// etc etc

// Free array when finished with array
free (data) ;

Note: You can check for memory leaks using dcc with the flag
dcc --leak-check

COMP1511/COMP1911

48

Coding with malloc

malloc_array.c

Demonstrate and check for memory leaks using dcc with the flag
dcc --leak-check

memory_hog.c

COMP1511/COMP1911

49

The realloc function

o What happens if this array wants to actually grow after you
have filled it up?

e We can use realloc on a dynamically created array

// Ask malloc for enough memory for an array of 10 ints

int *numbers = malloc (10 * sizeof(int));

// Decide later we need enough for 20 ints

// It will make the array bigger, without destroying the
// contents

numbers = realloc (numbers, 20 * sizeof(int));

COMP1511/COMP1911

Realloc coding example

realloc_array.c

COMP1511/COMP1911

51

COMP1511/COMP1911

What are Multi-File Projects?

52

Multi-File Projects

e Big programs are often spread out over multiple files. There are

a number of benefits to this:
o Improves readability (reduces length of program)
o You can separate code by subject (modularity)
o Modules can be written and tested separately
e So far we have already been using the multi-file capability.
o Every time we #include, we are actually borrowing code from
other files
o We have been only including C standard libraries

COMP1511/COMP1911

53

Multi-File Projects

e You can also #include your own! (FUN!)

e This allows us to join projects together

o It also allows multiple people to work together on projects out
in the real world

e We will also often produce code that we can then use again in

other projects
o thatis all that the C standard libraries are - functions that are
useful in multiple instances)

e Assignment 2 will be a multi-file assignment.
o Assignment 1 is not. Do NOT split it up into multiple files

COMP1511/COMP1911 54

Multi-File Projects

e In a multi file project we might have:
o (multiple) header files - like the .h files that you have been using
from standard libraries already
o (multiple) implementation files - these are .c files, they implement
what is in the corresponding header file.
e a.c file with a main function - this is the entry to our program,

we try and have as little code here as possible

COMP1511/COMP1911

55

Header (.h) Files

e .hfiles typically contain:
o function prototypes for the functions that will be implemented in
the implementation (.c) file
o comments that describe how the functions will be used
o #defines and enums
o they do not contain executable statements
o .hfiles give
o the programmer all the information they need to use the code (a
bit like documentation)
o the compiler the information it needs to do type/syntax checking

on the related .c files you #include itin
COMP1511/COMP1911 56

Implementation (.c) Files

e There will be exactly one .c file with a main function

e Other .c files typically contain:
o Implementations of the functions that you have defined in the
corresponding header files

e .cfiles #include relevant .hfiles
o You use "" instead of <> to include your own files E.qg.
0 #include "array utilities.h"

COMP1511/COMP1911

57

Example: Multi-File C Program

Suppose we have three files:
e headerfile array utilities.h
e implementation file array utilities.c
0 #include "array utilities.h"
o file with main function program.c
o #include "array utilities.h"

COMP1511/COMP1911

58

Compiling Multi-File Programs

e You do not compile the .h files.
o They should already be included in the relevant .c files
e You compile .c files together into 1 executable
o Exactly one of the .c files should have a main function
e E.Q.
$ dcc -o program program.c utilities.c
$./program
$ dcc -o other program other program.c utilities.c
$./other program

COMP1511/COMP1911 59

What did we learn today?

e Pointers
o Recap
o Pointers and Arrays (array_arguments.c, array_addresses.c
string_pointer_exercise.c)
e Dynamic Memory Allocation
o the heap
o malloc/free (sizeof_example.c, malloc_array.c, memory_hog.c)
o realloc (realloc_array.c)

o Working with multi-file projects

COMP1511/COMP1911

60

Now that we know

e structs
e pointers
e malloc/free

Next lecture we are ready to learn ...

COMP1511/COMP1911

61

COMP1511/COMP1911

Linked Lists!

62

Feedback Please!

Your feedback is valuable! E

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

[=]

)

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

[=]

https://forms.office.com/r/u89nL992CA

"ol »

COMP1511/COMP1911 63

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

64

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

