
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 7 Lecture 1 Second Attempt

Pointers, the Heap and Dynamic
Arrays

1

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_7/

Link to Week 7 Live Lecture Code

2

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_7/

COMP1511/COMP1911

Next Week: Week 8 Lab Exam
● In your lab time
● To prepare you for the format of the final invigilated exam
● Please attend your week 8 lab as scheduled

○ Online classes will get more information ASAP
● Worth 1 lab mark
● Email course account if for some reason you are sick or can’t attend

on the day

3

COMP1511/COMP1911

Week 8 Lab Marks
● 0.5 1 dot
● 0.5 2 dot
● 0.5 3 dot
● 1 mark lab exam - attempt and submit a solution for at least 1

question
● Number of questions

○ 4
○ 2 array hurdles
○ 2 debugging

4

COMP1511/COMP1911

Last Lecture
● Pointers basics recap

○ We did get a few slides in
● Lockdown
● Evacuation
● Apologies

5

COMP1511/COMP1911

5 -7pm live streamed on you tube
We will do the lecture that we were meant to be doing today.
Today we will do the lecture we were meant to do yesterday…

Extra Catch up Lecture tomorrow

6

COMP1511/COMP1911

Today’s Lecture
● Pointers recap continued
● Pointers
● Memory and the stack
● Dynamic Memory, malloc and the heap
● Multi-file Projects (if there is time)

7

COMP1511/COMP1911

int x = 2;
int y = 5;

int *ptr1 = &y;
int *ptr2 = &x;

int z = *ptr1 + *ptr2;
*ptr2 = z * 2;
printf("%d %d %d %d %d\n", x, y, z, *ptr1, *ptr2);

ptr1 = ptr2;
printf("%d %d %d %d %d\n", x, y, z, *ptr1, *ptr2);

recap_exercise.c What will this print out?

8

COMP1511/COMP1911

Pass By Value Recap: What will this print?

9

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(x,y);

 printf("%d %d\n", x, y);

 swap(x, y);

 printf("%d %d\n", x, y);

 return 0;

}

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

void swap(int x, int y) {

 int tmp = x;

 x = y;

 y = tmp;

}

COMP1511/COMP1911

More about Memory: The Stack

10

● Stack memory stores data about each
function your program calls.

● When a function is called, data gets
pushed onto the stack such as
○ local variables
○ where to return to when the function

finishes
● Once your function finishes, its data

including variables will automatically be
removed from the stack

Low Address

High Address

COMP1511/COMP1911

More about Memory: The Stack

11

main()

The Stack

int x =

int y =

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

COMP1511/COMP1911

More about Memory: The Stack

12

main()

The Stack

int x = 2

int y =

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

COMP1511/COMP1911

More about Memory: The Stack

13

main()

The Stack

int x = 2

int y = 5

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

COMP1511/COMP1911

More about Memory: The Stack

14

main()

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

The Stack

int x = 2

int y = 5

update()

int x = 2

int y = 5

void update(int x, int y) {

COMP1511/COMP1911

More about Memory: The Stack

15

main()

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

The Stack

int x = 2

int y = 5

update()

int x = 3

int y = 5

void update(int x, int y) {

x = x + 1;

COMP1511/COMP1911

More about Memory: The Stack

16

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

void update(int x, int y) {

x = x + 1;

y = y - 1;
main()

The Stack

int x = 2

int y = 5

update()

int x = 3

int y = 4

COMP1511/COMP1911

More about Memory: The Stack

17

main()

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

 printf("%d %d\n", x, y);

The Stack

int x = 2

int y = 5

void update(int x, int y) {

x = x + 1;

y = y - 1;

}

2 and 5 get printed

COMP1511/COMP1911

More about Memory: The Stack

18

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

The Stack
void update(int x, int y) {

x = x + 1;

y = y - 1;

}

COMP1511/COMP1911

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

To do this:
● Our main function would

have to pass in the
addresses of x and y

● Our update function would
need to change to
have pointer parameters
since pointers can store
addresses!

Functions and Pointers

19

void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

COMP1511/COMP1911

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

Functions and Pointers

20

main()

The Stack

int x = 2

int y = 5

update()

int *x =

int *y =

void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

 *x = *x + 1;

 *y = *y - 1;

}

COMP1511/COMP1911

Functions and Pointers

21

main()

The Stack

int x = 3

int y = 5

update()

int *x =

int *y =

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}
 *y = *y - 1;

}

COMP1511/COMP1911

Functions and Pointers

22

main()

The Stack

int x = 3

int y = 4

update()

int *x =

int *y =

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}}

COMP1511/COMP1911

Functions and Pointers

23

main()

The Stack

int x = 3

int y = 4

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

COMP1511/COMP1911

Now how can we modify swap?

24

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 printf("%d %d\n", x, y);

 swap(x, y);

 printf("%d %d\n", x, y);

 return 0;

}

void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

void swap(int x, int y) {

 int tmp = x;

 x = y;

 y = tmp;

}

COMP1511/COMP1911

What will this do?
How can we fix it?

Pointers to structs

25

void update(struct point p){
 p.x = p.x + 1;
 p.y = p.y + 1;
}

int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
 update(p);
 printf("(%d,%d)\n", p.x, p.y);
}

COMP1511/COMP1911

Pointers to structs

26

struct point update(struct point p){
 p.x = p.x + 1;
 p.y = p.y + 1;
 return p;
}
int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
 p = update(p);
 printf("(%d,%d)\n", p.x, p.y);
}

In this case we could
return the updated
copy!!

COMP1511/COMP1911

Pointers to structs

27

void update(struct point *p){
 p->x = p->x + 1;
 p->y = p->y + 1;
}

int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
 update(&p);
 printf("(%d,%d)\n", p.x, p.y);
}

We could also pass
in a pointer and
update the original
copy

COMP1511/COMP1911

● When we pass an array into a function, the address of the start
of the array gets passed in by default!
○ It does not send in a copy of all of the data
○ Just a copy of the address of the first element - a pointer!
○ This is why we can modify the contents of our arrays arguments

from within a function!

Functions and Arrays

28

// This WILL modify the contents of the num array
void increment_all(int nums[], int size){
 for (int i = 0; i < size; i++) {
 nums[i] = nums[i] + 1;
 }
}

COMP1511/COMP1911

array_arguments.c
arrays_addresses.c

Coding Demo Arrays and Pointers

29

COMP1511/COMP1911

 char s[] = "Pointers!!!";

 char *sp = &s[1];

 printf("%c\n", *sp);

 printf("%c\n", sp[0]);

 printf("%c\n", sp[1]);

 printf("%s\n", sp);

Exercise: What will this print?

30

string_pointer_exercise.c

COMP1511/COMP1911

Can we return a pointer from a function?

31

COMP1511/COMP1911

We can return Pointers from Functions

32

int *f(void){

 int x = 3;

 return &x;

}

But we can’t do this? Why? And we can’t do this? Why?

int *f(void){

 int numbers[] = {1, 2, 3};

 return numbers;

}

 We can’t return the address of a local variable

Local variables live on the stack

When the function returns it does not exist any more!

COMP1511/COMP1911

The Heap

● We would like to be able to create arrays
within functions and return them

● We would also like to create arrays whose
sizes are not know until runtime

● Can the heap allow us to do this?
○ Yes!!!!

33

Low Address

High Address

COMP1511/COMP1911

The Heap
● Unlike stack memory, heap memory is

allocated by the programmer
● It won't be deallocated until it is explicitly

freed by the programmer
● You now have the power to control memory

on the heap!
● With power comes heaps of responsibility

34

Low Address

High Address

COMP1511/COMP1911

● malloc is short for memory allocate
● malloc lets us ask for a number of bytes of memory on the heap
● malloc returns

○ a pointer to the chunk of memory or
○ NULL if there is not enough memory left to give us
○ You should always check for NULL in case.

● This allows us to dynamically create memory when we need it that
will last beyond the end of functions and until we say we don’t want it
anymore.

● You need to #include <stdlib.h> to use malloc

The Heap: malloc

35

COMP1511/COMP1911

● Sometimes we initialise our pointer variables with a special
value meaning that they don’t point to anything yet.
○ We use the special value NULL to do this

● You will get a run time error if you dereference a NULL pointer

The NULL Pointer

36

int *my_ptr = NULL;

// Dereferencing a NULL

// pointer will cause a

// run time error

printf("%d\n", *my_ptr);

int *my_ptr = NULL;

// Check for NULL first if

// it might be NULL

if (my_ptr != NULL) {

printf("%d\n", *my_ptr);

}

COMP1511/COMP1911

● We should use the sizeof operator to help calculate the exact
number of bytes we need to malloc

● sizeof returns an unsigned long value

○ long is a type like int that can stores larger numbers

○ unsigned means that it only stores value >= 0
● We can use it to find the sizeof a type or a variable.

sizeof Operator

37

// See sizeof_example.c for full program
int main(void) {
 printf("Size of an int: %lu bytes\n", sizeof(int));
 printf("Size of 10 ints: %lu bytes\n", 10 * sizeof(int));

COMP1511/COMP1911

● multiply the number of elements you need
by the sizeof the type of the element to
work out how many bytes you want malloc
to give you

● malloc will return a pointer to the starting
address of the chunk of memory it
allocated

Using malloc

38

int *numbers = malloc(10 * sizeof(int));

heap

((40 bytes)heap

COMP1511/COMP1911

● The free function lets the system know you don’t need chunk of
memory any more

● Every malloc needs a corresponding free
○ If your program keeps calling malloc without corresponding free

calls, the program will use more and more memory. This is called
a memory leak.

○ This is a big issue for long running programs
○ Operating systems recover memory when the program ends

● Accessing memory after freeing or freeing it again causes
nasty bugs

The free function

39

COMP1511/COMP1911

Note: You can check for memory leaks using dcc with the flag
dcc --leak-check

Putting it all together

40

// create array
int *data = malloc(num_elements *sizeof(int));
// check malloc was successful

// Use the array somehow
// etc etc

// Free array when finished with array
free(data);

COMP1511/COMP1911

Creating an array with malloc

41

#include <stdlib.h>

int main(void) {
 int num_elements;
 scanf("%d", &num_elements);

 // Size of array is determined by user at run time
 int *data = malloc(num_elements *sizeof(int));
 // Check to see if malloc was successful

 if (data == NULL) {
 printf("Out of memory\n");
 return 1;
 }

COMP1511/COMP1911

Using array created by malloc

42

● You can use array indexes as usual on arrays created with
malloc!

● You can pass them into functions whose inputs are arrays
● You can RETURN them from functions too!

○ Because they were malloced so are on the heap!!!!

COMP1511/COMP1911

Using array created by malloc

43

// returns a malloced array that has been initialised
int *create_array(void) {
 int num_elements;
 scanf("%d", &num_elements);
 int *data = malloc(num_elements *sizeof(int));
 // error checking omitted for slide
 for (int i = 0; i < num_elements; i++) {
 data[i] = i;
 }

return data;
}

COMP1511/COMP1911

malloc_array.c
Demonstrate and check for memory leaks using dcc with the flag
dcc --leak-check
memory_hog.c

Coding with malloc

44

COMP1511/COMP1911

struct coordinate {

 int x;

 int y;

};

// return a pointer to a coordinate struct with given x and y

struct coordinate *create_coordinate(int x, int y);

// print coordinate in the format (x, y)

void print_coordinate(struct coordinate *p);

Exercise: return pointer to struct

45

Write the functions and write a main function to
1. Call the first function with x and y 10, -1 and
2. Call the function to print the point.

COMP1511/COMP1911

● What happens if this array wants to actually grow after you
have filled it up?

● We can use realloc on a dynamically created array

The realloc function

46

// Ask malloc for enough memory for an array of 10 ints

int *numbers = malloc(10 * sizeof(int));

// Decide later we need enough for 20 ints

// It will make the array bigger, without destroying the

// contents

numbers = realloc(numbers, 20 * sizeof(int));

COMP1511/COMP1911

realloc_array.c

Realloc coding example

47

COMP1511/COMP1911

What are Multi-File Projects?

48

COMP1511/COMP1911

● Big programs are often spread out over multiple files. There are
a number of benefits to this:
○ Improves readability (reduces length of program)
○ You can separate code by subject (modularity)
○ Modules can be written and tested separately

● So far we have already been using the multi-file capability.
○ Every time we #include, we are actually borrowing code from

other files
○ We have been only including C standard libraries

Multi-File Projects

49

COMP1511/COMP1911

● You can also #include your own! (FUN!)
● This allows us to join projects together
● It also allows multiple people to work together on projects out

in the real world
● We will also often produce code that we can then use again in

other projects
○ that is all that the C standard libraries are - functions that are

useful in multiple instances)
● Assignment 2 will be a multi-file assignment.

○ Assignment 1 is not. Do NOT split it up into multiple files

Multi-File Projects

50

COMP1511/COMP1911

● In a multi file project we might have:
○ (multiple) header files - like the .h files that you have been using

from standard libraries already
○ (multiple) implementation files - these are .c files, they implement

what is in the corresponding header file.
● a .c file with a main function - this is the entry to our program,

we try and have as little code here as possible

Multi-File Projects

51

COMP1511/COMP1911

● .h files typically contain:
○ function prototypes for the functions that will be implemented in

the implementation (.c) file
○ comments that describe how the functions will be used
○ #defines and enums
○ they do not contain executable statements

● .h files give
○ the programmer all the information they need to use the code (a

bit like documentation)
○ the compiler the information it needs to do type/syntax checking

on the related .c files you #include it in

Header (.h) Files

52

COMP1511/COMP1911

● There will be exactly one .c file with a main function

● Other .c files typically contain:
○ Implementations of the functions that you have defined in the

corresponding header files
● .c files #include relevant .h files

○ You use "" instead of <> to include your own files E.g.
○ #include "array_utilities.h"

Implementation (.c) Files

53

COMP1511/COMP1911

Suppose we have three files:
● header file array_utilities.h
● implementation file array_utilities.c

○ #include "array_utilities.h"
● file with main function program.c

○ #include "array_utilities.h"

Example: Multi-File C Program

54

COMP1511/COMP1911

● You do not compile the .h files.
○ They should already be included in the relevant .c files

● You compile .c files together into 1 executable
○ Exactly one of the .c files should have a main function

● E.g.
$ dcc -o program program.c utilities.c
$./program
$ dcc -o other_program other_program.c utilities.c
$./other_program

Compiling Multi-File Programs

55

COMP1511/COMP1911 56

● Pointers
○ Recap
○ Pointers and Arrays (array_arguments.c, array_addresses.c

string_pointer_exercise.c)
● Dynamic Memory Allocation

○ the heap
○ malloc/free (sizeof_example.c, malloc_array.c, memory_hog.c)
○ realloc (realloc_array.c)

● Working with multi-file projects

What did we learn today?

COMP1511/COMP1911 57

● structs
● pointers
● malloc/free

We are ready to learn about…

Now that we know

COMP1511/COMP1911

Linked Lists!

58

COMP1511/COMP1911

● How do linked lists work?
● How can we create them, traverse them and add data to them

in our C code?

Next Lecture

59

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

60

https://forms.office.com/r/u89nL992CA

COMP1511/COMP1911 61

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

