COMP1511/1911 Programming Fundamentals

Week 5 Lecture 2
Pointers
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Link to Week 5 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/
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https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

Next Week is Flex Week

There are no lectures or tut/labs next week.

But there is your assn1
and lab 5to do

So there are:
e help sessions!
e revision sessions!
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Revision Sessions

Revision sessions in Week 6
Online only
Details coming soon...
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Last Lecture

e Strings recap
e Array of strings and Command Line Arguments (new content)
e Alarger array program (to help with assn1)
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Today's Lecture

e String Functions example with strcat
e Pointersl!!
e Memory and the stack
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String Function example with strcat

hello_word_struct.c
full_name.c
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Memory and Addresses

Memory

o Memory is effectively a gigantic array of bytes.
. . 0xFF4C
e Memory addresses are effectively an index to D

this array of bytes. OxFF48
e They are usually written in hexadecimal
o Oxis a prefix that means hexadecimal OxFF44

o Real addresses on our system would be 8

bytes and look something like
o 0x7ffcaa98655¢c

OxFF40
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Memory and Variables

o During execution program variables are
stored in memory.

o Each variable is stored at a particular
address.

// In this scenario,

// x is stored at address OxFF48

int x = 1;
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Memory and Variables

Memory
o During execution program variables are
. OxFF4C
stored in memory.
e Each variable is stored at a particular x 5 ‘ OxEF48 ‘
address.
OxFF44
// In this scenario,
// x is stored at address O0xFF48 OxFF40

int x = 1;

X++;

Even though the value in x has changed, the address is the same
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The Address of Operator

Memory

e We can get the address of a variable using the
0xFF4C
address of operator & D

x | 2 || oxFras|

OxFF44

int x = 2;

// Print the address of x OxFF40

// In this scenario it would print OxFF48
printf ("%$p", &x);
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Addresses

Memory

e We have seen the address of operator before
o We tell scanf the address of our variable so it
can go and put the data into the correct

memory location for us
o Like giving your address to pizza shop so they
know where to deliver your food to.

int y;
scanf ("%d", &y);
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Is there a way to store an address in a
variable?

COMP1511/COMP1911

13



Declaring a Pointer

o Pointers are variables that can store memory addresses
o To declare a pointer variable you specify what type the pointer
points to and use an asterisk to indicate it is a pointer.

e E.gtype pointing to *pointer variable name;

int *numbe:_ptr;
double *real ptr;
char *my ptr;

struct person *student ptr;
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Initialising a Pointer

e Toinitialise a pointer, we assign it the address of a variable

int x = 2; double y = 1.5;

// number ptr is declared // real ptr declared

// and initialised and double *real ptr;

// contains the address // real ptr is initialised
// of int wvariable x // and contains the

int *x ptr = &x; // address of double

// variable y
real ptr = &y;
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Declaring and Initialising Pointers

Memory

int x = 2 ‘ \ OXFF4C
int y = 99;
// x_ptr now contains address of x X > 2 OxFF48

hich in thi 10 i
// which in this scenario is y 99 OxFF44
// OxFF48
int *x ptr = &x; x_ptr—-| OxFF48 | oxFF40

OxFF3C

We say x_ptr references x or
x_ptr points to x OxFE38
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Dereference operator

Memory
e The dereference operator is *
o This accesses the value at the address ‘ \ OxFFaC
that the pointer variable holds X > 5 OxFF48
int x = 2; y 99 OxFF44

int y = 99;

int *x ptr = &x; x_ptr—{ OXFF48 | oxFF40

// *x ptr will go to address

OxFF3C
// O0xFF48 and get the value 2
printf ("%d\n", *x ptr); //prints 2 OxFF38
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Indirectly modify a variable

Memory

o We can use pointers to indirectly modify
. ‘ \ OxFF4C
variables
4

OxFF48

int x = 2;

int y = 99; y 99 OxFF44
int *x ptr = &x;

XFF4
// goes to address O0XFF48 and x_ptr— 0 8 | OxFF40

// sets the value to 7 oxFF3C
// x now has the wvalue 7!
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Pointers: Putting it all together

1. Declare a pointer with a * ds o= AD:

o this is where you specify // Declare a pointer

what type the pointer points  jnt *number pointer;
to and get a chunk of

memory for your pointer
variable

// Initialise pointer

number pointer= &x;

//dereference pointer to get
//42 so z is equal to 43

int z = *numbe:_pointer + 1;
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Pointers: Putting it all together

2. Initialise pointer
o assign the address to the
variable potentially using the
address of operator &
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int x = 42;
// Declare a pointer

int *number pointer;

// Initialise pointer

number pointer= &x;

//dereference pointer to get
//42 so z is equal to 43

int z = *numbe:_pointer + 1;
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Pointers: Putting it all together

3. Dereference a pointer

o using the dereference
operator *

o go to the address that this
pointer variable is assigned
and access what is at that
address
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int x = 42;
// Declare a pointer

int *number pointer;

// Initialise pointer

number pointer= &x;

//dereference pointer to get
//42 so z is equal to 43

int z = *numbe:_pointer + 1;

21



Pointer Coding Demo.

pointer_intro.c
changing_pointers.c
pointer_exercise.c
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What will this print out?

int x = -7;
5;

int y

int *ptrl = &y,
int *ptr2 = &x;

int z = *ptrl + y;
*ptr2 = z - 1;
printf ("%d %d %d\n", x, y, 2z);

ptr2 = ptrl;
printf ("%d %d\n", *ptrl, *ptr2);
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What is the point of all of this?
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What will this print?

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x,
update (x,y) ;
printf ("%d %d\n", x,
swap (x, y)’
printf ("%d %d\n", x,
return O;

}
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y);

y);

y);

void update (int x, int y)
X =x + 1;
y=y - 1;

void swap(int x, int y) {
int tmp = x;
X =y,

y = tmp;
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More about Memory: The Stack

High Address

stack
}-4

heap

global/static
variable

Low Address
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Stack memory stores data about each

function your program calls.

When a function is called, data gets

pushed onto the stack such as

o local variables

o where to return to when the function
finishes

Once your function finishes, its data

including variables will automatically be

removed from the stack
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More about Memory: The Stack

int main(void) {
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More about Memory: The Stack

int main(void) {

int x = 2;
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More about Memory: The Stack

int main(void) {
int x = 2;

int y = 5;
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More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=2

1]

int y=5

rs
A
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void update (int x, int y) {
x=x+ 1;
y=vy - 1L;

int main (void) {
int x = 2;
int y = 5;
update (x,y) ;

printf ("%d %d\n", x, y);

return 0;
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More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=3

1]

int y=5

rs
A
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void update (int x, int y) {

int

XxX=x <+ 1;

y=y - 1;

main (void) {

int x = 2;

int y = 5;

update (x,y) ;

printf ("%d %d\n", x,

return 0;

y);
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More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=3

1]

int y=4

rs
A
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void update (int x, int y) {
XxX=x <+ 1;
y=y - 1;
}
int main(void) {
int x = 2;
int y = 5;
update (x,y) ;
printf ("%d %d\n", x, y);

return 0;
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More about Memory: The Stack

The Stack | void update (int x, int y) {
| : XxX=x <+ 1;
main()
y=y - 1;

intx =2 }

int main(void) {

i

inty=5

int x = 2;

int y = 5;

update (x,y) ;

printf ("$d %d\n", x, y);
return O;

}

2 and 5 get printed
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More about Memory: The Stack

The Stack
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void update (int x, int y) {
x=x+1;
y=y - 1;
}
int main(void) {
int x = 2;
int y = 5;
update (x,y) ;
printf ("$d %d\n", x, y);

return 0;
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Functions and Pointers

o Variables and data are passed by value into functions (note:

arrays are a special case we will discuss separately)

o The function gets passed copies of the values

o We can't change the original values from inside the function
o The modified copies don't even exist once the function ends

o |sthere anyway around this?
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Functions and Pointers

e Can we pass in the addresses of variables into our functions

like we do with scanf so we can modify them?

o Yes! Then the function can go to the memory address and access
and modify the original values

o Note, we are still passing in copies of the addresses

So now we have a way of letting functions we call modify our local
variables, even if they are not arrays!!
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Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);

update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
ky = *ky - 1;

}
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To do this:

Our main function would
have to pass in the
addresses of x and y

Our update function would
need to change to

have pointer parameters
since pointers can store
addresses!
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Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
*y:*y—l;

}
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Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
*y = *y - 1;

}
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Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x 4+ 1;

*y =*ry - 1;
}
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Functions and Pointers

) _ ) The Stack |
int main(void) { r

main()

int x = 2;

int y = 5; intx=3

i

printf ("%$d %d\n", x, y); :
inty=4
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x 4+ 1;

*y = *y - 15
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Exercise: Now how can we modify swap?

int main(void) { void update (int *x, int *y) {
int x = 2; *x = *x + 1;
int y = 5; *y = *y - 1;
printf("%d %d\n", x, y); }
update (&x, &y) ;
printf ("%d %d\n", x, y); void swap(int x, int y) {
swap (x, y): int tmp = x;
printf ("%d %d\n", x, y); X =y,
return O; y = tmp;
} }
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How can we work with pointers to
structs?
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Pointers to structs

Remember that when we access members of a struct we use a .

struct point{ int main(void) {
int x; struct point p;
int y; p.x = 10;

}; p.y = 9;
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Pointers to structs

Accessing pointers to structs with .

struct point{
int x;
int y;

};
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gets messy.

int main(void) {
struct point p;
struct point *p ptr = &p;
(*p_ptr) .x = 10;
(*p_ptr) .y = 9;
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Pointers to structs

Instead we can use -> notation

struct point{ int main(void) {
int x; struct point p;
int y; struct point *p ptr = &p;
bi (*p_ptr) .x = 10;
(*p_ptr) .y = 9;
// The same but easier
p ptr->x = 10;

p ptr->y = 9;
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Exercise: Pointers to structs

void update (struct point p) {
p.x =p.x + 1;
pP.y =p.y + 1;

int main (void) {
struct point p;

p.-x = 10;
P.y = 9;
update (p) ;

printf (" (%d,%d)\n", p.x, P.Y):;
}
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What will this do?
How can we fix it?
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Pointers to structs

struct point update (struct point p) {
p-x =p.x + 1;

Py =p.y + 1;
return p;

int main (void) {
struct point p;
p.x = 10;
P.y = 9;
p = update(p);
printf (" (%d,%d)\n", p.x, pP.Y);
}
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An option without
pointers could be to
return the updated
point.
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Pointers to structs

void update (struct point *p) {
p->x = p->x + 1;
p->y = p~>y + 1;

int main (void) {

struct point p;

p.-x = 10;
P.y = 9;
update (&p) ;

printf (" (%d,%d)\n", p.x, P.Y):;
}
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We could also pass
in a pointer and
update the original

copy
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Functions and Arrays

o When we pass an array into a function, the address of the start

of the array gets passed in by default!

o It does not send in a copy of all of the data

o Just a copy of the address of the first element!

o This is why we can modify the contents of our array arguments

// This WILL modify the contents of the num array
void increment all(int nums[], int length) {
for (int i = 0; i1 < length; i++) {
nums[i] = nums[i] + 1;
}
}
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Code demo: Arrays and Pointers

array_addresses.c
array_arguments.c
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Exercise: What will this print?

string_pointer_exercise.c

char s[] = "Pointers!!!";
char *sp = &s[1l];

printf ("%c\n", *sp);
printf ("%c\n", sp[0]);
printf ("%$c\n", sp[l]);
printf ("$s\n", sp);

COMP1511/COMP1911
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Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/F2nghrNNJd

COMP1511/COMP1911

53



What did we learn today?

e Addresses

e Pointers

e Memory and the Stack

e Pointers and Functions

e Pointers to structs with ->
e Pointers and Arrays

Have an amazing Flex week.
See you back in week 7 where we will learn about the Heap, malloc,
dynamic arrays and...
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Linked Lists!
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Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au
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