COMP1511/1911 Programming Fundamentals

Week 5 Lecture 2
Pointers

COMP1511/COMP1911

Link to Week 5 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

Next Week is Flex Week

There are no lectures or tut/labs next week.

But there is your assn1
and lab 5to do

So there are:
e help sessions!
e revision sessions!

COMP1511/COMP1911

Revision Sessions

Revision sessions in Week 6
Online only
Details coming soon...

COMP1511/COMP1911

Last Lecture

e Strings recap
e Array of strings and Command Line Arguments (new content)
e Alarger array program (to help with assn1)

COMP1511/COMP1911

Today's Lecture

e String Functions example with strcat
e Pointersl!!
e Memory and the stack

COMP1511/COMP1911

String Function example with strcat

hello_word_struct.c
full_name.c

COMP1511/COMP1911

Memory and Addresses

Memory

o Memory is effectively a gigantic array of bytes.
. . 0xFF4C
e Memory addresses are effectively an index to D

this array of bytes. OxFF48
e They are usually written in hexadecimal
o Oxis a prefix that means hexadecimal OxFF44

o Real addresses on our system would be 8

bytes and look something like
o 0x7ffcaa98655¢c

OxFF40

COMP1511/COMP1911 8

Memory and Variables

o During execution program variables are
stored in memory.

o Each variable is stored at a particular
address.

// In this scenario,

// x is stored at address OxFF48

int x = 1;

COMP1511/COMP1911

Memory

EI OxFFAC

|

‘ OxFF48 ‘

OxFF44

OxFF40

Memory and Variables

Memory
o During execution program variables are
. OxFF4C
stored in memory.
e Each variable is stored at a particular x 5 ‘ OxEF48 ‘
address.
OxFF44
// In this scenario,
// x is stored at address O0xFF48 OxFF40

int x = 1;

X++;

Even though the value in x has changed, the address is the same

COMP1511/COMP1911

10

The Address of Operator

Memory

e We can get the address of a variable using the
0xFF4C
address of operator & D

x | 2 || oxFras|

OxFF44

int x = 2;

// Print the address of x OxFF40

// In this scenario it would print OxFF48
printf ("%$p", &x);

COMP1511/COMP1911 11

Addresses

Memory

e We have seen the address of operator before
o We tell scanf the address of our variable so it
can go and put the data into the correct

memory location for us
o Like giving your address to pizza shop so they
know where to deliver your food to.

int y;
scanf ("%d", &y);

COMP1511/COMP1911

EI OxFFAC

OxFF48

OxFF44

OxFF40

12

Is there a way to store an address in a
variable?

COMP1511/COMP1911

13

Declaring a Pointer

o Pointers are variables that can store memory addresses
o To declare a pointer variable you specify what type the pointer
points to and use an asterisk to indicate it is a pointer.

e E.gtype pointing to *pointer variable name;

int *numbe:_ptr;
double *real ptr;
char *my ptr;

struct person *student ptr;

COMP1511/COMP1911 14

Initialising a Pointer

e Toinitialise a pointer, we assign it the address of a variable

int x = 2; double y = 1.5;

// number ptr is declared // real ptr declared

// and initialised and double *real ptr;

// contains the address // real ptr is initialised
// of int wvariable x // and contains the

int *x ptr = &x; // address of double

// variable y
real ptr = &y;

COMP1511/COMP1911

Declaring and Initialising Pointers

Memory

int x = 2 ‘ \ OXFF4C
int y = 99;
// x_ptr now contains address of x X > 2 OxFF48

hich in thi 10 i
// which in this scenario is y 99 OxFF44
// OxFF48
int *x ptr = &x; x_ptr—-| OxFF48 | oxFF40

OxFF3C

We say x_ptr references x or
x_ptr points to x OxFE38

COMP1511/COMP1911 16

Dereference operator

Memory
e The dereference operator is *
o This accesses the value at the address ‘ \ OxFFaC
that the pointer variable holds X > 5 OxFF48
int x = 2; y 99 OxFF44

int y = 99;

int *x ptr = &x; x_ptr—{ OXFF48 | oxFF40

// *x ptr will go to address

OxFF3C
// O0xFF48 and get the value 2
printf ("%d\n", *x ptr); //prints 2 OxFF38

COMP1511/COMP1911 17

Indirectly modify a variable

Memory

o We can use pointers to indirectly modify
. ‘ \ OxFF4C
variables
4

OxFF48

int x = 2;

int y = 99; y 99 OxFF44
int *x ptr = &x;

XFF4
// goes to address O0XFF48 and x_ptr— 0 8 | OxFF40

// sets the value to 7 oxFF3C
// x now has the wvalue 7!

COMP1511/COMP1911 18

Pointers: Putting it all together

1. Declare a pointer with a * ds o= AD:

o this is where you specify // Declare a pointer

what type the pointer points jnt *number pointer;
to and get a chunk of

memory for your pointer
variable

// Initialise pointer

number pointer= &x;

//dereference pointer to get
//42 so z is equal to 43

int z = *numbe:_pointer + 1;

COMP1511/COMP1911 19

Pointers: Putting it all together

2. Initialise pointer
o assign the address to the
variable potentially using the
address of operator &

COMP1511/COMP1911

int x = 42;
// Declare a pointer

int *number pointer;

// Initialise pointer

number pointer= &x;

//dereference pointer to get
//42 so z is equal to 43

int z = *numbe:_pointer + 1;

20

Pointers: Putting it all together

3. Dereference a pointer

o using the dereference
operator *

o go to the address that this
pointer variable is assigned
and access what is at that
address

COMP1511/COMP1911

int x = 42;
// Declare a pointer

int *number pointer;

// Initialise pointer

number pointer= &x;

//dereference pointer to get
//42 so z is equal to 43

int z = *numbe:_pointer + 1;

21

Pointer Coding Demo.

pointer_intro.c
changing_pointers.c
pointer_exercise.c

COMP1511/COMP1911

22

What will this print out?

int x = -7;
5;

int y

int *ptrl = &y,
int *ptr2 = &x;

int z = *ptrl + y;
*ptr2 = z - 1;
printf ("%d %d %d\n", x, y, 2z);

ptr2 = ptrl;
printf ("%d %d\n", *ptrl, *ptr2);

COMP1511/COMP1911

23

What is the point of all of this?

COMP1511/COMP1911

24

What will this print?

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x,
update (x,y) ;
printf ("%d %d\n", x,
swap (x, y)’
printf ("%d %d\n", x,
return O;

}

COMP1511/COMP1911

y);

y);

y);

void update (int x, int y)
X =x + 1;
y=y - 1;

void swap(int x, int y) {
int tmp = x;
X =y,

y = tmp;

25

More about Memory: The Stack

High Address

stack
}-4

heap

global/static
variable

Low Address

COMP1511/COMP1911

Stack memory stores data about each

function your program calls.

When a function is called, data gets

pushed onto the stack such as

o local variables

o where to return to when the function
finishes

Once your function finishes, its data

including variables will automatically be

removed from the stack

26

More about Memory: The Stack

int main(void) {

COMP1511/COMP1911

27

More about Memory: The Stack

int main(void) {

int x = 2;

COMP1511/COMP1911

28

More about Memory: The Stack

int main(void) {
int x = 2;

int y = 5;

COMP1511/COMP1911

29

More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=2

1]

int y=5

rs
A

COMP1511/COMP1911

void update (int x, int y) {
x=x+ 1;
y=vy - 1L;

int main (void) {
int x = 2;
int y = 5;
update (x,y) ;

printf ("%d %d\n", x, y);

return 0;

30

More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=3

1]

int y=5

rs
A

COMP1511/COMP1911

void update (int x, int y) {

int

XxX=x <+ 1;

y=y - 1;

main (void) {

int x = 2;

int y = 5;

update (x,y) ;

printf ("%d %d\n", x,

return 0;

y);

31

More about Memory: The Stack

The Stack

-]

—~

i

main()

intx =2

inty=5

update()

int x=3

1]

int y=4

rs
A

COMP1511/COMP1911

void update (int x, int y) {
XxX=x <+ 1;
y=y - 1;
}
int main(void) {
int x = 2;
int y = 5;
update (x,y) ;
printf ("%d %d\n", x, y);

return 0;

32

More about Memory: The Stack

The Stack | void update (int x, int y) {
| : XxX=x <+ 1;
main()
y=y - 1;

intx =2 }

int main(void) {

i

inty=5

int x = 2;

int y = 5;

update (x,y) ;

printf ("$d %d\n", x, y);
return O;

}

2 and 5 get printed

COMP1511/COMP1911 33

More about Memory: The Stack

The Stack

COMP1511/COMP1911

void update (int x, int y) {
x=x+1;
y=y - 1;
}
int main(void) {
int x = 2;
int y = 5;
update (x,y) ;
printf ("$d %d\n", x, y);

return 0;

34

Functions and Pointers

o Variables and data are passed by value into functions (note:

arrays are a special case we will discuss separately)

o The function gets passed copies of the values

o We can't change the original values from inside the function
o The modified copies don't even exist once the function ends

o |sthere anyway around this?

COMP1511/COMP1911

35

Functions and Pointers

e Can we pass in the addresses of variables into our functions

like we do with scanf so we can modify them?

o Yes! Then the function can go to the memory address and access
and modify the original values

o Note, we are still passing in copies of the addresses

So now we have a way of letting functions we call modify our local
variables, even if they are not arrays!!

COMP1511/COMP1911 36

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);

update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
ky = *ky - 1;

}

COMP1511/COMP1911

To do this:

Our main function would
have to pass in the
addresses of x and y

Our update function would
need to change to

have pointer parameters
since pointers can store
addresses!

37

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
*y:*y—l;

}

COMP1511/COMP1911

=

The Stack

—~

main()

S
=
X
I

N

|

inty=5

|

|

update

int *x =

L]]

rs

38

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x + 1;
*y = *y - 1;

}

COMP1511/COMP1911

=

The Stack

—~

main()

intx=3

|

inty=5

|

|

update

int *x =

L]]

int *y =

rs

39

Functions and Pointers

int main(void) {
int x = 2;
int y = 5;
printf ("%d %d\n", x, y);
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x 4+ 1;

*y =*ry - 1;
}

COMP1511/COMP1911

= |

The Stack

—~

main()

intx=3

|

inty=4

|

|

update

int *x =

L]]

int *y =

rs

40

Functions and Pointers

) _) The Stack |
int main(void) { r

main()

int x = 2;

int y = 5; intx=3

i

printf ("%$d %d\n", x, y); :
inty=4
update (&x, &y) ;

void update (int *x, int *y) {
*x = *x 4+ 1;

*y = *y - 15

COMP1511/COMP1911 41

Exercise: Now how can we modify swap?

int main(void) { void update (int *x, int *y) {
int x = 2; *x = *x + 1;
int y = 5; *y = *y - 1;
printf("%d %d\n", x, y); }
update (&x, &y) ;
printf ("%d %d\n", x, y); void swap(int x, int y) {
swap (x, y): int tmp = x;
printf ("%d %d\n", x, y); X =y,
return O; y = tmp;
} }

COMP1511/COMP1911

How can we work with pointers to
structs?

COMP1511/COMP1911

43

Pointers to structs

Remember that when we access members of a struct we use a .

struct point{ int main(void) {
int x; struct point p;
int y; p.x = 10;

}; p.y = 9;

COMP1511/COMP1911

44

Pointers to structs

Accessing pointers to structs with .

struct point{
int x;
int y;

};

COMP1511/COMP1911

gets messy.

int main(void) {
struct point p;
struct point *p ptr = &p;
(*p_ptr) .x = 10;
(*p_ptr) .y = 9;

45

Pointers to structs

Instead we can use -> notation

struct point{ int main(void) {
int x; struct point p;
int y; struct point *p ptr = &p;
bi (*p_ptr) .x = 10;
(*p_ptr) .y = 9;
// The same but easier
p ptr->x = 10;

p ptr->y = 9;

COMP1511/COMP1911 46

Exercise: Pointers to structs

void update (struct point p) {
p.x =p.x + 1;
pP.y =p.y + 1;

int main (void) {
struct point p;

p.-x = 10;
P.y = 9;
update (p) ;

printf (" (%d,%d)\n", p.x, P.Y):;
}

COMP1511/COMP1911

What will this do?
How can we fix it?

47

Pointers to structs

struct point update (struct point p) {
p-x =p.x + 1;

Py =p.y + 1;
return p;

int main (void) {
struct point p;
p.x = 10;
P.y = 9;
p = update(p);
printf (" (%d,%d)\n", p.x, pP.Y);
}

COMP1511/COMP1911

An option without
pointers could be to
return the updated
point.

48

Pointers to structs

void update (struct point *p) {
p->x = p->x + 1;
p->y = p~>y + 1;

int main (void) {

struct point p;

p.-x = 10;
P.y = 9;
update (&p) ;

printf (" (%d,%d)\n", p.x, P.Y):;
}

COMP1511/COMP1911

We could also pass
in a pointer and
update the original

copy

49

Functions and Arrays

o When we pass an array into a function, the address of the start

of the array gets passed in by default!

o It does not send in a copy of all of the data

o Just a copy of the address of the first element!

o This is why we can modify the contents of our array arguments

// This WILL modify the contents of the num array
void increment all(int nums[], int length) {
for (int i = 0; i1 < length; i++) {
nums[i] = nums[i] + 1;
}
}

COMP1511/COMP1911

50

Code demo: Arrays and Pointers

array_addresses.c
array_arguments.c

COMP1511/COMP1911

51

Exercise: What will this print?

string_pointer_exercise.c

char s[] = "Pointers!!!";
char *sp = &s[1l];

printf ("%c\n", *sp);
printf ("%c\n", sp[0]);
printf ("%$c\n", sp[l]);
printf ("$s\n", sp);

COMP1511/COMP1911

52

Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/F2nghrNNJd

COMP1511/COMP1911

53

What did we learn today?

e Addresses

e Pointers

e Memory and the Stack

e Pointers and Functions

e Pointers to structs with ->
e Pointers and Arrays

Have an amazing Flex week.
See you back in week 7 where we will learn about the Heap, malloc,
dynamic arrays and...

COMP1511/COMP1911

54

COMP1511/COMP1911

Linked Lists!

55

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

56

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

