COMP1511/1911 Programming Fundamentals

Week 5 Lecture 1

Command Line Arguments
Lecture Program 2D Arrays of structs

COMP1511/COMP1911

Link to Week 5 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

Last Week

e 2D Arrays

e Strings

o We did not get up to arrays of strings or command line
arguments

COMP1511/COMP1911

Today's Lecture

e Recap strings
e Array of strings
e Command line args

e Revision: A bigger 2D array of structs with enums program!
o mud_and_bones.c
o Putting together concepts needed in assn1
o Style tips for assn 1

COMP1511/COMP1911

Strings recap: What are they?

e Strings are a collection of characters

e InCastringis
o an array of char
o that ends with a special character *\0’ (null terminator)

char char char char char char
‘h’ ‘e! El! GI! £01 ‘\07
0 1 2 3 4 5

COMP1511/COMP1911

Printing Strings

char word[] = "hello"; // the easy way
int i = 0; // using printf with %s
while (word[i] '= '\0') { char word[] = "hello";
pr:Lntf ("%C" y Word[l]) ’ Prlntf (H%SH , Word) :
i++;
}
char char char char char char
‘h’ ‘e! ‘l’ ‘I! ‘O’ ‘\O,
0 1 2 3 4 5

COMP1511/COMP1911

Strings: How do we read them in?

char array[MAX LENGTH];

// Read in the string into array of length MAX LENGTH

// from standard input - which by default is the terminal
fgets (array, MAX LENGTH, stdin);

Assume MAX LENGTH is 6 and the user types in hi then presses
enter we would get an array like:

char char char char char char
‘h’ Ii! G\n5 ‘\O! f? f?
0 1 2 3 4 5

COMP1511/COMP1911

string.h library functions

Some other useful functions for strings:

strlen ()
strcpy ()
strcmp ()
strcat ()

strchr ()

gives us the length of the string excluding the "\0O'
copy the contents of one string to another

compare two strings

append one string to the end of another (concatenate)

find the first occurance of a character in a string

Find more here: https://www.tutorialspoint.com/c_standard library/string h.htm

COMP1511/COMP1911

https://www.tutorialspoint.com/c_standard_library/string_h.htm

String Functions: strcpy strlen

// Declare an array to store a string
char puppy[MAX LENGTH] = "Boots";

// Copy the string "Finn" into the word array

// be careful the array is big enough so you do not overflow
// the array

strcpy (puppy, "Finn");

printf ("$s\n", puppy)

// Find string length. It does NOT include '\0' in the length
int len = strlen (puppy) ;

printf ("%$s has length %d\n", puppy, len);

COMP1511/COMP1911

String Functions: strcmp

// Declare an array to store a string

char name[] = "Oscar";

// Use strcmp to compare 2 strings
// It will return 0 if the strings are equal
// A negative number if the first string < second string
// A positive number if the first string > second string
if (strcmp("Oscar", name) == 0) {

printf ("Hello Oscar!\n");
} else {

printf ("You are not Oscar'\n");

}

COMP1511/COMP1911

10

String Functions: fgets and strcmp

// Declare an array to store a string
char name[MAX LENGTH] ;

_ ; What issue would
printf ("Type in a name: ") ;

we get here?

// Read in a string
fgets (name, MAX LENGTH, stdin);

// Use strcmp to compare 2 strings
if (strcmp("Oscar", name) == 0)
printf ("Hello Oscar!\n");
} else {
printf ("You are not Oscar!\n");

}

COMP1511/COMP1911

11

String Functions: Use with care

What is wrong with this?

// Declare an array to store a string

char favourite food[] = "kfc";

// Actually pizza is now my favourite food
strcpy (favourite food, "pizza");

printf ("$s\n", favourite food);

Try running string_functions_danger.c

COMP1511/COMP1911

12

String Functions Demo

string_functions.c
string_functions_danger.c

COMP1511/COMP1911

13

Array of Strings

// This array can store 3 strings.
// Each string has max size 5, including ‘\O0’

char WOrdS[3] [5] —_ {"hat", "cake", "tea"};

e You can have an array of strings!

e You can also think of it as a 2D row0 | ¢y | <5’ 47

array of characters

| “hat” I“Cake”l “tea” |

col0 col1 col2 col3 col4
\Q’

row1 | ‘C’ ‘a’ ‘K’ ‘é, \O’
row2 | ‘T ‘e’ | ‘a | \O’

0 1 2

COMP1511/COMP1911

14

Array of Strings

char words[3][5] = {"hat", "cake", "tea"};
// Using 1 index gives us a row/string
// This would print “cake”

printf ("%$s\n", words[1l]) ;

col0 col1 col2 <col3 col4
e You can have an array of strings!
e You can also think of itas a 2D row0 | ‘1’ | ‘g2 | 4 | \O’
array of characters -
row1 ‘C! Ia! Gk’ ‘e, G\OS
| “hat” I “Cake” I “.tea” |
r0W2 G.t! ‘e’ ‘a, I\O!
0 1 2
COMP1511/COMP1911

15

Array of Strings

char WordS[3] [5] - {"hat", "cake", "tea"};

// Using 2 indexes gives us a character

// This would print the ‘e’ from “tea”
printf ("$c\n" ,words[2] [1]) ;
col0 col1 col2 col3 col4
e You can have an array of strings!
e You can also think of it as a 2D row0 | ‘K I ‘92 | 4 | \O
array of characters -
row1 ‘C! ia! Ek, ‘e, E\O!
| “hat” I “Cake” I “.tea” |
row2 ‘t! ‘61 ‘a, ‘\O’
0 1 2
COMP1511/COMP1911

16

Code Demo: Array of Strings

array_of_strings.c
e initialise data
e print out data

COMP1511/COMP1911

17

What are Command Line Arguments?

COMP1511/COMP1911

18

Command Line Arguments

o So far, we have only given input to our program after we have
started running that program (using scanf() or fgets())

e Our main function prototype has always been
int main (void) ;

e Command line arguments allow us to give inputs to our
program at the time that we start running it! E.g.

$ dcc prog.c -o prog

$./prog argumentl argument2 argument3 argumentd
$./prog 123 hello

COMP1511/COMP1911

19

Command Line Arguments

e To use command line arguments you need to change your main
function prototype to
int main(int argc, char *argv([])
e argc
o a counter for how many command line arguments you have
(including the program name)
e char *argv]|]
o an array of the different command line arguments
o each command line argument is a string (an array of char)

COMP1511/COMP1911 20

Command Line Arguments

e If we ran our program as follows:

$./prog 123 dog “hello world”

e argc would be equalto 4
e argv would be an array of strings we can visualise as follows:

‘ “./prog” ‘ “123” ‘ “dog” “‘hello world”‘

0 1 2 3

COMP1511/COMP1911

21

Command Line Arguments

int main(int argc, char *argv[]) {

printf ("There are %d command line arguments\n", argc);

// argv[0] is always the program name
printf ("This program name is %s\n", argv[0]);

// print out all arguments in the argv array
for (int 1 = 0; 1 < argc; i++) {

printf ("Argument at index %d is %s\n", i, argv[i]);
}

return 0O;

}

COMP1511/COMP1911 22

Command Line Arguments

$ dcc -o command line args command line args.c
$./command line args 123 dog "Hello World" COMP1511
This program has 5 command line arguments

This program name

Argument
Argument
Argument
Argument
Argument

COMP1511/COMP1911

at
at
at
at
at

index
index
index
index
index

is ./command line args
0 is ./command line args
1 is 123
2 is dog
3 is Hello World
is COMP1511

Converting Strings to Integers: atoi

e You may want to use your command line arguments to perform
calculations, but they are strings!

o There is a function that converts strings to integers:
o atoi () inthe standard library: <stdlib.h>
o E.g. int x =atoi("952")
« Would give us a value of 952 stored in x

COMP1511/COMP1911

24

Converting Strings to Integers: atoi

int main (int argc, char *argv[]) {
int sum = 0;
for (int i = 1; i1 < argc; i++) {
sum = sum + atoi(argv[i]) ;

}

printf ("%d is the sum of all command line args\n", sum);
return O;

COMP1511/COMP1911

25

Command Line Arguments

e command_line_args.c
e atoi_demo.c

COMP1511/COMP1911

26

Array Lecture Program
All the key concepts in Practice

COMP1511/COMP1911

27

Mud and Bones

We have the following “game”.

A dog (the player) is moving around on a map
The locations on the map contain either grass or mud.
They may also contain a bone.

The dog can move around the map to collect bones

If he steps in mud he will spread that mud to the next location
he goes to.

COMP1511/COMP1911 28

Mud and Bones

The game ends when: Tk .
The dog finds all the bones!
The dog steps in mud 3 times and has to go home for a bath nﬂ_

The player presses Ctrl*D!

COMP1511/COMP1911

29

Mud and Bones

Important types and constants given to you for this code

#define MAP ROWS 8 enum item type ({
#define MAP COLUMNS 8 EMPTY,
enum ground type { BONE
GRASS, };
MUD struct location {
}; enum item type item;

enum ground type ground;

0

COMP1511/COMP1911

30

The Map: 8x8 2D array of struct location

struct location map[MAP ROWS] [MAP COLUMNS] ;

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

struct location map[MAP ROWS] [MAP COLUMNS] ;

Row 0

Row 1

Row 2

Row 3

Col 0 Col 1 Col 2
EMPTY BONE EMPTY
GRASS MUD GRASS
EMPTY BONE EMPTY
MUD GRASS MUD
EMPTY EMPTY BONE
GRASS GRASS GRASS
EMPTY EMPTY EMPTY
GRASS GRASS GRASS

COMP1511/COMP1911

If we zoom into a
section of the map, we
can see each oneis a
struct location with an
item type and a ground

type

32

The Map: 8x8 2D array of struct location

struct location map[MAP ROWS] [MAP COLUMNS] ;

Row 0

Row 1

Row 2

Col 0 Col 1 Col 2

EMPTY BONE EMPTY
GRASS MUD GRASS
EMPTY BONE EMPTY
GRASS GRASS GRASS
EMPTY EMPTY EMPTY
GRASS GRASS GRASS

COMP1511/COMP1911

In this example

map|0][1].item
has the value BONE

map|0][1].ground has
the value MUD

33

Mud and Bones

Provided Function Prototypes

void initialise map(struct location map[MAP ROWS] [MAP COLUMNS]) ;
void print map (

struct location map[MAP ROWS] [MAP COLUMNS],

int dog row,

int dog col,

int bone_ count,

int mud_count

) ;

COMP1511/COMP1911

34

Mud and Bones Starter Code

e Creates a map variable

e C(Calls initialise on the map

e C(Calls print_board, passing in INVALID_INDEX for dog_row and
dog_col and 0 for bone_count (0) and mud_count(0)

COMP1511/COMP1911

35

Mud and Bones Stage 1

e |Initialise dog starting position
o scan in co-ordinates from the user and set the dog’s
starting position.
o Ifillegal, set to (O, O)
o Update the board and mud and bone counts accordingly
m Increment the bone count and remove bones from the
map once found
m Update the changes in ground_type based on the dog’s
movement through mud.
o Print the board!

COMP1511/COMP1911

36

Mud and Bones Stage 2

In a loop that ends with Ctrl-D (no winning yet)
e Allow the user to enter ‘w’ ‘a’ ‘s’ ‘d’ to move the dog around
the map.

e Increment the bone count and remove bones from the map
once found.

e Update the mud count if the dog steps in mud. (Don’t worry
about spreading mud to other locations yet).

e Print the map after each move

e Note: we are assuming the user types in valid input. If they
don’t then the game may crash!!!

COMP1511/COMP1911 37

Mud and Bones Stage 3

e Implement mud spreading

e Implement
o winning the game by finding all the bones
o Losing the game by stepping in mud 3 times

COMP1511/COMP1911

38

Assignment 1 Style Tips

Follow the style guide, but some simple things to watch out for:
e Functions

o #defines constants for magic numbers including ‘w’ etc

e Comments

e linelength

Get feedback from

o style checker

e checking the style guide

e asking your tutor or a help session tutor to give feedback

COMP1511/COMP1911

39

Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/QD15dbp6KD

COMP1511/COMP1911

40

What did we learn today?

e String recap
o string_functions.c string_functions_danger.c full_name.c
e Arrays of strings
o arrays_of_strings.c
e Command Line Arguments
o command_line_args.c atoi_demo.c
e 2D array of structs with enums coding example
o mud_and_bones.c

COMP1511/COMP1911

41

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

42

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

