
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 5 Lecture 1

Command Line Arguments
Lecture Program 2D Arrays of structs

1

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

Link to Week 5 Live Lecture Code

2

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_5/

COMP1511/COMP1911

Last Week
● 2D Arrays
● Strings
● We did not get up to arrays of strings or command line

arguments

3

COMP1511/COMP1911

Today’s Lecture
● Recap strings
● Array of strings
● Command line args
● Revision: A bigger 2D array of structs with enums program!

○ mud_and_bones.c
○ Putting together concepts needed in assn1
○ Style tips for assn 1

4

COMP1511/COMP1911

● Strings are a collection of characters
● In C a string is

○ an array of char
○ that ends with a special character ‘\0’ (null terminator)

Strings recap: What are they?

5

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

COMP1511/COMP1911

Printing Strings

6

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char word[] = "hello";
int i = 0;
while (word[i] != '\0') {
 printf("%c", word[i]);
 i++;
}

// the easy way

// using printf with %s

char word[] = "hello";

printf("%s", word);

COMP1511/COMP1911

char array[MAX_LENGTH];

// Read in the string into array of length MAX_LENGTH

// from standard input - which by default is the terminal

fgets(array, MAX_LENGTH, stdin);

Strings: How do we read them in?

7

char char char char char char

0 1 2 3 4 5

‘h’ ‘i’ ‘\n’ ‘\0’ ? ?

Assume MAX_LENGTH is 6 and the user types in hi then presses
enter we would get an array like:

COMP1511/COMP1911

Some other useful functions for strings:

string.h library functions

8

strlen() gives us the length of the string excluding the '\0'

strcpy() copy the contents of one string to another

strcmp() compare two strings

strcat() append one string to the end of another (concatenate)

strchr() find the first occurance of a character in a string

Find more here: https://www.tutorialspoint.com/c_standard_library/string_h.htm

https://www.tutorialspoint.com/c_standard_library/string_h.htm

COMP1511/COMP1911

String Functions: strcpy strlen

9

// Declare an array to store a string

char puppy[MAX_LENGTH] = "Boots";

// Copy the string "Finn" into the word array

// be careful the array is big enough so you do not overflow

// the array

strcpy(puppy, "Finn");

printf("%s\n", puppy);

// Find string length. It does NOT include '\0' in the length

int len = strlen(puppy);

printf("%s has length %d\n", puppy, len);

COMP1511/COMP1911

String Functions: strcmp

10

// Declare an array to store a string

char name[] = "Oscar";

// Use strcmp to compare 2 strings

// It will return 0 if the strings are equal

// A negative number if the first string < second string

// A positive number if the first string > second string

if (strcmp("Oscar", name) == 0) {
 printf("Hello Oscar!\n");
} else {
 printf("You are not Oscar!\n");
}

COMP1511/COMP1911

String Functions: fgets and strcmp

11

// Declare an array to store a string
char name[MAX_LENGTH];
printf("Type in a name: ");

// Read in a string
fgets(name, MAX_LENGTH, stdin);

// Use strcmp to compare 2 strings
if (strcmp("Oscar", name) == 0)

printf("Hello Oscar!\n");
} else {
 printf("You are not Oscar!\n");
}

What issue would
we get here?

COMP1511/COMP1911

What is wrong with this?

String Functions: Use with care

12

// Declare an array to store a string

char favourite_food[] = "kfc";

// Actually pizza is now my favourite food

strcpy(favourite_food, "pizza");

printf("%s\n", favourite_food);

Try running string_functions_danger.c

COMP1511/COMP1911

string_functions.c
string_functions_danger.c

String Functions Demo

13

COMP1511/COMP1911

// This array can store 3 strings.

// Each string has max size 5, including ‘\0’

char words[3][5] = {"hat", "cake", "tea"};

● You can have an array of strings!
● You can also think of it as a 2D

array of characters

Array of Strings

14

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”

COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 1 index gives us a row/string

// This would print “cake”

printf("%s\n", words[1]);

● You can have an array of strings!
● You can also think of it as a 2D

array of characters

Array of Strings

15

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”

COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 2 indexes gives us a character

// This would print the ‘e’ from “tea”

printf("%c\n",words[2][1]);

● You can have an array of strings!
● You can also think of it as a 2D

array of characters

Array of Strings

16

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”

COMP1511/COMP1911

array_of_strings.c
● initialise data
● print out data

Code Demo: Array of Strings

17

COMP1511/COMP1911

What are Command Line Arguments?

18

COMP1511/COMP1911

● So far, we have only given input to our program after we have
started running that program (using scanf() or fgets())

● Our main function prototype has always been
int main(void);

● Command line arguments allow us to give inputs to our
program at the time that we start running it! E.g.

Command Line Arguments

19

$ dcc prog.c -o prog
$./prog argument1 argument2 argument3 argument4
$./prog 123 hello

COMP1511/COMP1911

● To use command line arguments you need to change your main
function prototype to
int main(int argc, char *argv[])

● argc
○ a counter for how many command line arguments you have

(including the program name)
● char *argv[]

○ an array of the different command line arguments
○ each command line argument is a string (an array of char)

Command Line Arguments

20

COMP1511/COMP1911

● If we ran our program as follows:

Command Line Arguments

21

$./prog 123 dog “hello world”

● argc would be equal to 4
● argv would be an array of strings we can visualise as follows:

0 1 2

“./prog” “123” “dog” “hello world”

3

COMP1511/COMP1911

int main(int argc, char *argv[]) {
 printf("There are %d command line arguments\n", argc);

 // argv[0] is always the program name
 printf("This program name is %s\n", argv[0]);

 // print out all arguments in the argv array
 for (int i = 0; i < argc; i++) {
 printf("Argument at index %d is %s\n", i, argv[i]);
 }
 return 0;
}

Command Line Arguments

22

COMP1511/COMP1911

$ dcc -o command_line_args command_line_args.c
$./command_line_args 123 dog "Hello World" COMP1511
This program has 5 command line arguments
This program name is ./command_line_args
Argument at index 0 is ./command_line_args
Argument at index 1 is 123
Argument at index 2 is dog
Argument at index 3 is Hello World
Argument at index 4 is COMP1511

Command Line Arguments

23

COMP1511/COMP1911

● You may want to use your command line arguments to perform
calculations, but they are strings!

● There is a function that converts strings to integers:
○ atoi() in the standard library: <stdlib.h>
○ E.g. int x = atoi("952")

■ Would give us a value of 952 stored in x

Converting Strings to Integers: atoi

24

COMP1511/COMP1911

Converting Strings to Integers: atoi

25

int main(int argc, char *argv[]) {

 int sum = 0;

 for (int i = 1; i < argc; i++) {

 sum = sum + atoi(argv[i]);

 }

 printf("%d is the sum of all command line args\n", sum);

 return 0;

}

COMP1511/COMP1911

● command_line_args.c
● atoi_demo.c

Command Line Arguments

26

COMP1511/COMP1911

Array Lecture Program
All the key concepts in Practice

27

COMP1511/COMP1911

We have the following “game”.
● A dog (the player) is moving around on a map
● The locations on the map contain either grass or mud.
● They may also contain a bone.
● The dog can move around the map to collect bones
● If he steps in mud he will spread that mud to the next location

he goes to.

Mud and Bones

28

COMP1511/COMP1911

The game ends when:
The dog finds all the bones!
The dog steps in mud 3 times and has to go home for a bath
The player presses Ctrl^D!

Mud and Bones

29

COMP1511/COMP1911

Important types and constants given to you for this code

Mud and Bones

30

#define MAP_ROWS 8

#define MAP_COLUMNS 8

enum ground_type {

 GRASS,

 MUD

};

enum item_type {

 EMPTY,

 BONE

};

struct location {

enum item_type item;

enum ground_type ground;

};

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

31

struct location map[MAP_ROWS][MAP_COLUMNS];

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

32

struct location map[MAP_ROWS][MAP_COLUMNS];

EMPTY
GRASS

BONE
MUD

EMPTY
GRASS

EMPTY
MUD

BONE
GRASS

EMPTY
MUD

EMPTY
GRASS

EMPTY
GRASS

BONE
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

Col 0 Col 1 Col 2

Row 0

Row 1

Row 2

Row 3

If we zoom into a
section of the map, we
can see each one is a
struct location with an
item type and a ground
type

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

33

struct location map[MAP_ROWS][MAP_COLUMNS];

EMPTY
GRASS

BONE
MUD

EMPTY
GRASS

EMPTY
GRASS

BONE
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

Col 0 Col 1 Col 2

Row 0

Row 1

Row 2

In this example

map[0][1].item
has the value BONE

map[0][1].ground has
the value MUD

COMP1511/COMP1911

Provided Function Prototypes

Mud and Bones

34

void initialise_map(struct location map[MAP_ROWS][MAP_COLUMNS]);

void print_map(

 struct location map[MAP_ROWS][MAP_COLUMNS],

 int dog_row,

 int dog_col,

 int bone_count,

 int mud_count

);

COMP1511/COMP1911

● Creates a map variable
● Calls initialise on the map
● Calls print_board, passing in INVALID_INDEX for dog_row and

dog_col and 0 for bone_count (0) and mud_count(0)

Mud and Bones Starter Code

35

COMP1511/COMP1911

● Initialise dog starting position
○ scan in co-ordinates from the user and set the dog’s

starting position.
○ If illegal, set to (0, 0)
○ Update the board and mud and bone counts accordingly

■ Increment the bone count and remove bones from the
map once found

■ Update the changes in ground_type based on the dog’s
movement through mud.

○ Print the board!

Mud and Bones Stage 1

36

COMP1511/COMP1911

In a loop that ends with Ctrl-D (no winning yet)
● Allow the user to enter ‘w’ ‘a’ ‘s’ ‘d’ to move the dog around

the map.
● Increment the bone count and remove bones from the map

once found.
● Update the mud count if the dog steps in mud. (Don’t worry

about spreading mud to other locations yet).
● Print the map after each move
● Note: we are assuming the user types in valid input. If they

don’t then the game may crash!!!

Mud and Bones Stage 2

37

COMP1511/COMP1911

● Implement mud spreading
● Implement

○ winning the game by finding all the bones
○ Losing the game by stepping in mud 3 times

Mud and Bones Stage 3

38

COMP1511/COMP1911

Follow the style guide, but some simple things to watch out for:
● Functions
● #defines constants for magic numbers including ‘w’ etc
● Comments
● line length

Get feedback from
● style checker
● checking the style guide
● asking your tutor or a help session tutor to give feedback

Assignment 1 Style Tips

39

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

40

https://forms.office.com/r/QD15dbp6KD

COMP1511/COMP1911 41

● String recap
○ string_functions.c string_functions_danger.c full_name.c

● Arrays of strings
○ arrays_of_strings.c

● Command Line Arguments
○ command_line_args.c atoi_demo.c

● 2D array of structs with enums coding example
○ mud_and_bones.c

What did we learn today?

COMP1511/COMP1911 42

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

