
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals
 

Week 4 Lecture 2

Strings, Arrays of Strings

1



COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_4/

 

Link to Week 4 Live Lecture Code

2

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_4/


COMP1511/COMP1911

Census Date this wednesday

About Census Dates | UNSW Current Students

3

https://www.student.unsw.edu.au/census


COMP1511/COMP1911

● There were no tut/labs yesterday.
● If you are in a monday class usually, don’t miss out

○ Sign up for a replacement class for this week: 
○ https://buytickets.at/comp1511unsw/1857310
○ Access code “COMP1511” 
○ COMP(1511|1911) 25T3 — Course Timetable

 

Public Holiday Classes

4

https://buytickets.at/comp1511unsw/1857310
https://cgi.cse.unsw.edu.au/~cs1511/25T3/timetable


COMP1511/COMP1911

The revision sessions are:

● Week 4 Wednesday 08/10/2025 2PM-4PM - Lyre Lab (K17 G12)

● Week 4 Thursday 09/10/2025 12PM-2PM - Online 
○ General | COMP1511/1911 Help Sessions + Revision Sessions | T3, 2025 | 

Microsoft Teams

Please sign up for the revision sessions here. 

The access code is "COMP1511", case sensitive and without the quotes. 

More info in this post.

Revision Sessions This Week (Not recorded) 

5

https://teams.microsoft.com/l/team/19%3AJ7O_XN72j38foNlmNC3tMjrpHHmY9y_cELhGtKvo0n41%40thread.tacv2/conversations?groupId=94f71ed5-ca5a-4c98-92b1-bcbcc4ab650b&tenantId=3ff6cfa4-e715-48db-b8e1-0867b9f9fba3
https://teams.microsoft.com/l/team/19%3AJ7O_XN72j38foNlmNC3tMjrpHHmY9y_cELhGtKvo0n41%40thread.tacv2/conversations?groupId=94f71ed5-ca5a-4c98-92b1-bcbcc4ab650b&tenantId=3ff6cfa4-e715-48db-b8e1-0867b9f9fba3
https://buytickets.at/comp1511unsw/1884230
https://discourse01.cse.unsw.edu.au/25T3/COMP1511/t/revision-sessions-start-next-week/86


COMP1511/COMP1911

All help sessions held for the term will be on this timetable: 

https://cgi.cse.unsw.edu.au/~cs1511/current/help-sessions/

They are drop-in. You do not need to book these.

Help Sessions

6

https://cgi.cse.unsw.edu.au/~cs1511/current/flask.cgi/help-sessions/
https://cgi.cse.unsw.edu.au/~cs1511/current/help-sessions/


COMP1511/COMP1911

Last Lecture
● Recap Arrays
● Functions and Arrays
● Arrays of structs
● 2D Arrays

7



COMP1511/COMP1911

Today’s Lecture
● Assignment 1 intro
● 2D Arrays recap
● Strings
● Arrays of strings

Note: Anything we don’t finish can be covered in the next lecture.

8



COMP1511/COMP1911

● Due: Mon Wk7 @ 5PM
● It is an individual assignment
● Aims of the assignment

○ Use arrays and two-dimensional arrays to solve a larger problem
○ Apply the use of functions in code 
○ Practice skills in debugging code, and skills in patience as you 

search for your missing semicolons 
○ Practice using good style

■ You will be assessed on style! 20% of your mark

Assignment 1 has been released 

9



COMP1511/COMP1911

● Broken into stages
○ Stages  1, 2 and 3 

● Stage 4: 
○ Is a challenge stage. 
○ Not everyone will finish stage 4.
○ You can get great marks without completing this stage
○ You are on track and doing well in the course even if you don’t get 

up to this stage

Assignment 1 Stages

10



COMP1511/COMP1911

● Read spec and watch video
● Download starter code
● Run reference implementation to see what the finished product 

should do!!! 
● Implement and test each substage, one at a time
● If stuck, get help from 

○ tutors
○ forum
○ help sessions

Assignment 1 Getting Started

11



COMP1511/COMP1911

Recap: 2D Arrays: Accessing Indexes

12

// A 2D array with 3 rows and 5 columns of int

int number_grid[3][5];

// To access an element you need to give 2 indexes

number_grid[2][3] = 42;

col 0

row 0

col 1 col 2 col 3 col 4

row 1

row 2 42



COMP1511/COMP1911

2D Arrays: Traversal

13

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 0 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

14

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 1 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

15

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 2 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

16

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 3 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

17

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 0 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

18

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 1 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

19

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 2 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

20

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 3 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

21

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 0 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

22

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 1 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

23

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 2 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

24

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 3 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

● recap_2D_array.c
○ copy array

● diagonals.c
○ sum_diagonal_top_right

Recap of 2D Arrays Coding

25



COMP1511/COMP1911

Strings

26



COMP1511/COMP1911

● Strings are a collection of characters 
● In C a string is

○  an array of char
○  that ends with a special character ‘\0’ (null terminator)

Strings: What are they?

27

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’



COMP1511/COMP1911

● The null terminator ‘\0’ must be at the end of every string
○ If it does not have one it is not a string! Just an array of char

● The array must be big enough to store the extra character
● It is not displayed as part of the string 
● It is very useful to know when our string has come to an end, 

when we loop through the array of characters
● Anything in the array after the ‘\0’ is not part of the string

Null Terminator

28



COMP1511/COMP1911

● This still represents the string “hello”
● Anything in the array after the first ‘\0’ character is ignored

Strings: Null Terminator

29

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6 7

‘x’ ‘P’



COMP1511/COMP1911

Strings: How do we initialise them?

30

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

// the painful way

char word[] = {'h','e','l','l','o','\0'};

// the more convenient way which does the same thing

char word[] = "hello";



COMP1511/COMP1911

Strings: How do we print them?

31

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char word[] = "hello";
int i = 0;
while (word[i] != '\0') {
    printf("%c", word[i]);
    i++;
}

// the easy way

// using printf with %s

char word[] = "hello";

printf("%s", word);



COMP1511/COMP1911

simple_strings.c
● declaring, 
● initialising, 
● modifying,
● printing strings,
● writing our own printing function 

Code Demo

32



COMP1511/COMP1911

● No. Please don’t. It can read strings that are too long to fit in the 
array
○ Overwrite other memory - buffer overflow
○ Security Vulnerability
○ Hackers can exploit this
○ You will see more about this in COMP1521

● It may not do what you expect/want anyway
○ Stops when it encounters whitespace

● It is forbidden in the style guide. You will lose marks for using it

Strings: Can I read them in with scanf %s?

33



COMP1511/COMP1911

We fgets them:  fgets(array, size, stream);
fgets needs three inputs:
● array - the array that the string will be stored into
● size - the size of the array

○ fgets will only read in and store a max of  size - 1 characters 
● stream - this is where this string is coming from

○ For this course it will always be stdin (standard input: by default 
the input will always be from terminal) 

Strings: How do we read them in?

34



COMP1511/COMP1911

One call to fgets will read in characters until
● size - 1 characters are read in
● a newline character is read in 

○ this newline character is stored in the array
● we get to the end of file 

○ which is Ctrl+D on a line of its own for terminal input

Note: There is a matching function that prints strings out
fputs(array, stream);
● For this course stream will always be stdout (terminal) 

Strings: How do we read them in?

35



COMP1511/COMP1911

char array[MAX_LENGTH];

// Read in the string into array of length MAX_LENGTH 

// from standard input - which by default is the terminal

fgets(array, MAX_LENGTH, stdin);

Strings: How do we read them in?

36

char char char char char char

0 1 2 3 4 5

‘h’ ‘i’ ‘\n’ ‘\0’ ? ?

If MAX_LENGTH is 6 and the user types in hi then presses enter we would 
get an array like:



COMP1511/COMP1911

// Declare an array to store your string
char array[MAX_LENGTH];

printf("Type in a string to echo: ");
// Read a string into array again and again
// until Ctrl+D is pressed (indicated by fgets returning NULL)
while (fgets(array, MAX_LENGTH, stdin) != NULL) {
    printf("The string is:\n");
    printf("%s", array);
    printf("Type in a string to echo: ");
}

Strings: How do we read in many of them?

37

Note: We are only ever storing 1 string at a time with this code



COMP1511/COMP1911

You can use these to make your life easier when working with 
characters!

  
   

ctype.h library functions 

38

toupper() convert a character to uppercase

tolower() convert a character to lowercase

isupper() test whether a character is uppercase

islower() test whether a character is lowercase

Find more here: https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm


COMP1511/COMP1911

read_strings.c
● Read in a string
● Try reading in a string that is too long
● Repeatedly read in a string
● Convert string to all capitals

 

Code Demo: Reading in Strings

39



COMP1511/COMP1911

Some other useful functions for strings:

  
   

string.h library functions 

40

strlen() gives us the length of the string excluding the '\0'

strcpy() copy the contents of one string to another

strcmp() compare two strings

strcat() append one string to the end of another (concatenate)

strchr() find the first occurance of a character in a string

Find more here: https://www.tutorialspoint.com/c_standard_library/string_h.htm

https://www.tutorialspoint.com/c_standard_library/string_h.htm


COMP1511/COMP1911

String Functions: strcpy strlen

41

// Declare an array to store a string

char puppy[MAX_LENGTH] = "Boots";

// Copy the string "Finn" into the word array

// be careful the array is big enough so you do not overflow

// the array

strcpy(puppy, "Finn");

printf("%s\n", puppy);

// Find string length. It does NOT include '\0' in the length

int len = strlen(puppy);

printf("%s has length %d\n", puppy, len);



COMP1511/COMP1911

String Functions: strcmp

42

// Declare an array to store a string

char name[] = "Oscar";

// Use strcmp to compare 2 strings

// It will return 0 if the strings are equal

// A negative number if the first string < second string

// A positive number if the first string > second string

if (strcmp("Oscar", name) == 0) {
    printf("Hello Oscar!\n");
} else {
    printf("You are not Oscar!\n");
} 



COMP1511/COMP1911

String Functions:  fgets and strcmp

43

// Declare an array to store a string
char name[MAX_LENGTH];
printf("Type in a name: ");

// Read in a string
fgets(name, MAX_LENGTH, stdin);

// Use strcmp to compare 2 strings
if (strcmp("Oscar", name) == 0) 

printf("Hello Oscar!\n");
} else {
    printf("You are not Oscar!\n");
} 

What issue would 
we get here?



COMP1511/COMP1911

string_functions.c

String Functions Demo

44



COMP1511/COMP1911

// This array can store 3 strings. 

// Each string has max size 5, including ‘\0’

char words[3][5] = {"hat", "cake", "tea"};

● You can have an array of strings!
● You can also think of it as a 2D 

array of characters

Array of Strings

45

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”



COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 1 index gives us a row/string 

// This would print “cake”

printf("%s\n", words[1]);

● You can have an array of strings!
● You can also think of it as a 2D 

array of characters

Array of Strings

46

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”



COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 2 indexes gives us a character

// This would print the ‘e’ from “tea”

printf("%c\n",words[2][1]);

● You can have an array of strings!
● You can also think of it as a 2D 

array of characters

Array of Strings

47

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”



COMP1511/COMP1911

array_of_strings.c
● initialise data
● print out data

Coding Demo: Array of Strings

48



COMP1511/COMP1911

Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.

49

https://forms.office.com/r/EUq6MitZp4



COMP1511/COMP1911 50

● recap 2D arrays
○ 2D_array.c, diagonals.c

● strings
○ simple_strings.c, read_strings.c, string_functions.c

● arrays of strings
○ array_of_strings.c

What did we learn today?



COMP1511/COMP1911

Monday:
● Command Line Arguments
● Putting Everything Together:

○ A larger lecture example with 2D arrays of structs with enums
○ Help with concepts needed in assignment 1

Tuesday:
● Pointers

Next Week

51



COMP1511/COMP1911 52

Content Related Questions:  
Forum

Admin related Questions email: 
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

