COMP1511/1911 Programming Fundamentals

Week 4 Lecture 2
Strings, Arrays of Strings

COMP1511/COMP1911

Link to Week 4 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_4/

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_4/

Census Date this wednesday

—— Term 3, 2025 - Census date (T3)

9 Oet:2025, 11:59pm

Last day to drop Teaching Period Three (T3) courses without financial liability.

About Census Dates | UNSW Current Students

COMP1511/COMP1911

https://www.student.unsw.edu.au/census

Public Holiday Classes

e There were no tut/labs yesterday.

e If you are in a monday class usually, don't miss out

o Sign up for a replacement class for this week:

https://buytickets.at/comp1511unsw/1857310

o Access code “COMP1511” E]
COMP(1511|1911) 25T3 — Course Timetable

O

O

COMP1511/COMP1911

https://buytickets.at/comp1511unsw/1857310
https://cgi.cse.unsw.edu.au/~cs1511/25T3/timetable

Revision Sessions This Week (Not recorded)

The revision sessions are;
e Week 4 Wednesday 08/10/2025 2PM-4PM - Lyre Lab (K17 G12)

e Week 4 Thursday 09/10/2025 12PM-2PM - Online
o General | COMP1511/1911 Help Sessions + Revision Sessions | T3, 2025 |
Microsoft Teams

Please sign up for the revision sessions here.
The access code is "COMP1511", case sensitive and without the quotes.

More info in this post.

COMP1511/COMP1911

https://teams.microsoft.com/l/team/19%3AJ7O_XN72j38foNlmNC3tMjrpHHmY9y_cELhGtKvo0n41%40thread.tacv2/conversations?groupId=94f71ed5-ca5a-4c98-92b1-bcbcc4ab650b&tenantId=3ff6cfa4-e715-48db-b8e1-0867b9f9fba3
https://teams.microsoft.com/l/team/19%3AJ7O_XN72j38foNlmNC3tMjrpHHmY9y_cELhGtKvo0n41%40thread.tacv2/conversations?groupId=94f71ed5-ca5a-4c98-92b1-bcbcc4ab650b&tenantId=3ff6cfa4-e715-48db-b8e1-0867b9f9fba3
https://buytickets.at/comp1511unsw/1884230
https://discourse01.cse.unsw.edu.au/25T3/COMP1511/t/revision-sessions-start-next-week/86

Help Sessions

All help sessions held for the term will be on this timetable:
https://cgi.cse.unsw.edu.au/~cs1511/current/help-sessions/

They are drop-in. You do not need to book these.

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/current/flask.cgi/help-sessions/
https://cgi.cse.unsw.edu.au/~cs1511/current/help-sessions/

Last Lecture

e Recap Arrays

e Functions and Arrays
e Arrays of structs

o 2D Arrays

COMP1511/COMP1911

Today's Lecture

e Assignment 1 intro
e 2D Arrays recap

e Strings

e Arrays of strings

Note: Anything we don't finish can be covered in the next lecture.

COMP1511/COMP1911

Assignment 1 has been released

e Due: Mon Wk7 @ 5PM
e Itis anindividual assignment
o Aims of the assignment

o Use arrays and two-dimensional arrays to solve a larger problem
o Apply the use of functions in code
o Practice skills in debugging code, and skills in patience as you
search for your missing semicolons
o Practice using good style
s You will be assessed on style! 20% of your mark

COMP1511/COMP1911

Assignment 1 Stages

e Broken into stages
o Stages 1,2and 3
o Stage 4.
o Is achallenge stage.
o Not everyone will finish stage 4.
o You can get great marks without completing this stage
o You are on track and doing well in the course even if you don't get

up to this stage

COMP1511/COMP1911

10

Assignment 1 Getting Started

e Read spec and watch video

e Download starter code

o Run reference implementation to see what the finished product
should do!!!

o Implement and test each substage, one at a time

o If stuck, get help from
o tutors
o forum
o help sessions

COMP1511/COMP1911

11

Recap: 2D Arrays: Accessing Indexes

// A 2D array with 3 rows and 5 columns of int
int number grid[3][5];
// To access an element you need to give 2 indexes

number grid[2] [3] 42;

col0 col1 col2 <col3 col4d

row 0

row 1

row 2

COMP1511/COMP1911

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row =0
Inner loop: col =0

col 0

col 1

col 2

col 3

13

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row =0
Inner loop: col =1

col0 col1i col2 col3

14

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row =0
Inner loop: col =2

col0 col1i col2 col3

15

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row =0
Inner loop: col =3

col0 col1i col2 col3

16

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 1
Inner loop: col =0

col 0

col 1

col 2

col 3

17

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 1
Inner loop: col =1

col0 col1i col2 col3

18

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 1
Inner loop: col =2

col0 col1i col2 col3

19

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 1
Inner loop: col =3

col0 col1i col2 col3

20

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 2
Inner loop: col =0

row 0

row 1

col0 col1i col2 col3

21

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 2
Inner loop: col =1

col0 col1i col2 col3

22

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 2
Inner loop: col =2

col0 col1i col2 col3

23

2D Arrays: Traversal

// Assume ROWS is 3 and COLS is 4
int array[ROWS] [COLS] = {{1, 2, 3,
{9I 8’ 7’

{5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
int col = 0;
while (col < COLS) {

printf ("%d ", array[row] [col]);

col++;

}
printf ("\n") ;
row++;

COMP1511/COMP1911

Outer loop: row = 2
Inner loop: col =3

col0 col1i col2 col3

24

Recap of 2D Arrays Coding

e recap_2D_array.c
o COopy array
e diagonals.c
o sum_diagonal_top_right

COMP1511/COMP1911

25

COMP1511/COMP1911

Strings

26

Strings: What are they?

e Strings are a collection of characters

e InCastringis
o an array of char
o that ends with a special character *\0’ (null terminator)

char char char char char char
‘h’ ‘e! El! GI! £01 ‘\07
0 1 2 3 4 5

COMP1511/COMP1911

Null Terminator

e The null terminator \O’ must be at the end of every string
o If it does not have one it is not a string! Just an array of char

e The array must be big enough to store the extra character

o Itis not displayed as part of the string

e Itis very useful to know when our string has come to an end,
when we loop through the array of characters

e Anything in the array after the \0' is not part of the string

COMP1511/COMP1911

28

Strings: Null Terminator

o This still represents the string “hello”
e Anything in the array after the first \O’ character is ignored

char char char char char char
‘h’ ‘e! El! GI! £01 ‘\01 ‘X’ ‘P!
0 1 2 3 4 5 6 7

COMP1511/COMP1911

Strings: How do we initialise them?

// the painful way
char word[] = {'h','e','1','1','0"','\0"};
// the more convenient way which does the same thing

char word[] = "hello";

char char char char char char
‘h’ ‘e! El! GI! £01 ‘\07
0 1 2 3 4 5
COMP1511/COMP1911

30

Strings: How do we print them?

char word[]

int 1 = 0;

while (word[i]
printf ("%c"

= "hello";

1= "\0")

, word[i]);

// the easy way
// using printf with %s
char word[] = "hello";

printf ("%s", word);

i++;
}
char char char char char
(h’ El! ﬁI! ‘O! ‘\07
0 2 3 4 5

COMP1511/COMP1911

31

Code Demo

simple_strings.c

e declaring,

e initialising,

o modifying,

e printing strings,

e writing our own printing function

COMP1511/COMP1911

32

Strings: Can | read them in with scanf %s?

e No. Please don't. It can read strings that are too long to fit in the

array
o Overwrite other memory - buffer overflow
o Security Vulnerability
o Hackers can exploit this
o You will see more about this in COMP1521
e It may not do what you expect/want anyway
o Stops when it encounters whitespace
o Itis forbidden in the style guide. You will lose marks for using it

COMP1511/COMP1911

33

Strings: How do we read them in?

We fgets them: fgets (array, size, stream);
fgets needs three inputs:
e array - the array that the string will be stored into
o size-the size of the array
o fgets will only read in and store a max of size - 1 characters

o stream - this is where this string is coming from
o For this course it will always be stdin (standard input: by default
the input will always be from terminal)

COMP1511/COMP1911 34

Strings: How do we read them in?

One call to fgets will read in characters until
e size-1 characters areread in
e anewline characterisread in
o this newline character is stored in the array
o Wwe get to the end of file
o which is Ctrl+D on a line of its own for terminal input

Note: There is a matching function that prints strings out
fputs (array, stream)
e For this course stream will always be stdout (terminal)

COMP1511/COMP1911

35

Strings: How do we read them in?

char array[MAX LENGTH];
// Read in the string into array of length MAX LENGTH

// from standard input - which by default is the terminal
fgets (array, MAX LENGTH, stdin);

If MAX LENGTH is 6 and the user types in hi then presses enter we would
get an array like:

char char char char char char
‘h’ Ii! G\n5 ‘\O! f? f?
0 1 2 3 4 5

COMP1511/COMP1911

Strings: How do we read in many of them?

// Declare an array to store your string
char array[MAX LENGTH] ;

printf ("Type in a string to echo: ");
// Read a string into array again and again
// until Ctrl+D is pressed (indicated by fgets returning NULL)

while (fgets(array, MAX LENGTH, stdin) !'= NULL) ({
printf ("The string is:\n");
printf ("%s", array)
printf ("Type in a string to echo: ");

}

Note: We are only ever storing 1 string at a time with this code

COMP1511/COMP1911

37

ctype.h library functions

You can use these to make your life easier when working with
characters!

toupper () converta character to uppercase
tolower () convert a character to lowercase
isupper () testwhether a character is uppercase

islower () test whether a character is lowercase

Find more here: https://www.tutorialspoint.com/c_standard library/ctype h.htm

COMP1511/COMP1911

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

Code Demo: Reading in Strings

read_strings.c

e Readin a string

e Tryreading in a string that is too long
o Repeatedly read in a string

o Convert string to all capitals

COMP1511/COMP1911

39

string.h library functions

Some other useful functions for strings:

strlen ()
strcpy ()
strcmp ()
strcat ()

strchr ()

gives us the length of the string excluding the "\0O'
copy the contents of one string to another

compare two strings

append one string to the end of another (concatenate)

find the first occurance of a character in a string

Find more here: https://www.tutorialspoint.com/c_standard library/string h.htm

COMP1511/COMP1911

40

https://www.tutorialspoint.com/c_standard_library/string_h.htm

String Functions: strcpy strlen

// Declare an array to store a string
char puppy[MAX LENGTH] = "Boots";

// Copy the string "Finn" into the word array

// be careful the array is big enough so you do not overflow
// the array

strcpy (puppy, "Finn");

printf ("$s\n", puppy)

// Find string length. It does NOT include '\0' in the length
int len = strlen (puppy) ;

printf ("%$s has length %d\n", puppy, len);

COMP1511/COMP1911

41

String Functions: strcmp

// Declare an array to store a string

char name[] = "Oscar";

// Use strcmp to compare 2 strings
// It will return 0 if the strings are equal
// A negative number if the first string < second string
// A positive number if the first string > second string
if (strcmp("Oscar", name) == 0) {

printf ("Hello Oscar!\n");
} else {

printf ("You are not Oscar'\n");

}

COMP1511/COMP1911

42

String Functions: fgets and strcmp

// Declare an array to store a string
char name[MAX LENGTH] ;

_ ; What issue would
printf ("Type in a name: ") ;

we get here?

// Read in a string
fgets (name, MAX LENGTH, stdin);

// Use strcmp to compare 2 strings
if (strcmp("Oscar", name) == 0)
printf ("Hello Oscar!\n");
} else {
printf ("You are not Oscar!\n");

}

COMP1511/COMP1911

43

String Functions Demo

string_functions.c

COMP1511/COMP1911

44

Array of Strings

// This array can store 3 strings.
// Each string has max size 5, including ‘\O0’

char WOrdS[3] [5] —_ {"hat", "cake", "tea"};

e You can have an array of strings!

e You can also think of it as a 2D row0 | ¢y | <5’ 47

array of characters

| “hat” I“Cake”l “tea” |

col0 col1 col2 col3 col4
\Q’

row1 | ‘C’ ‘a’ ‘K’ ‘é, \O’
row2 | ‘T ‘e’ | ‘a | \O’

0 1 2

COMP1511/COMP1911

45

Array of Strings

char words[3][5] = {"hat", "cake", "tea"};
// Using 1 index gives us a row/string
// This would print “cake”

printf ("%$s\n", words[1l]) ;

col0 col1 col2 <col3 col4
e You can have an array of strings!
e You can also think of itas a 2D row0 | ‘1’ | ‘g2 | 4 | \O’
array of characters -
row1 ‘C! Ia! Gk’ ‘e, G\OS
| “hat” I “Cake” I “.tea” |
r0W2 G.t! ‘e’ ‘a, I\O!
0 1 2
COMP1511/COMP1911

46

Array of Strings

char WordS[3] [5] - {"hat", "cake", "tea"};

// Using 2 indexes gives us a character

// This would print the ‘e’ from “tea”
printf ("$c\n" ,words[2] [1]) ;
col0 col1 col2 col3 col4
e You can have an array of strings!
e You can also think of it as a 2D row0 | ‘K I ‘92 | 4 | \O
array of characters -
row1 ‘C! ia! Ek, ‘e, E\O!
| “hat” I “Cake” I “.tea” |
row2 ‘t! ‘61 ‘a, ‘\O’
0 1 2
COMP1511/COMP1911

47

Coding Demo: Array of Strings

array_of_strings.c
e initialise data
e print out data

COMP1511/COMP1911

48

Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

https://forms.office.com/r/EUg6MitZp4

COMP1511/COMP1911

49

What did we learn today?

e recap 2D arrays

o 2D_array.c, diagonals.c
e strings

o simple_strings.c, read_strings.c, string_functions.c
e arrays of strings

o array_of_strings.c

COMP1511/COMP1911

50

Next Week

Monday:
e Command Line Arguments

e Putting Everything Together:
o A larger lecture example with 2D arrays of structs with enums
o Help with concepts needed in assignment 1

Tuesday:
e Pointers

COMP1511/COMP1911

51

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

52

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

