COMP1511/1911 Programming Fundamentals

Week 3 Lecture 2
Arrays

COMP1511/COMP1911

Census Date

—— Term 3, 2025 - Census date (T3)

9 0et: 2025, 11:59pm

Last day to drop Teaching Period Three (T3) courses without financial liability.

About Census Dates | UNSW Current Students

COMP1511/COMP1911

https://www.student.unsw.edu.au/census

Public Holiday on Monday

e Booking for tut/lab

e Recording for lecture

o Lab 3 due-week 4 tuesday 6pm

e Lab 4 due-week 5tuesday 6pm

o Assignment released early week 4

COMP1511/COMP1911

Revision Sessions Week 4

e Like a Hybrid tutorial/lab session
o structured with lab style questions
e Forum post coming soon with more information!!

COMP1511/COMP1911

Link to Week 3 Live Lecture Code

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_3/ @ {0, @

Disclaimer:

Some live lecture code is not cleaned up and polished!!!

It may have some things that are not 100% perfect style.
| also sometimes have extra comments explaining how

C works that would not be needed usually.

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_3/

Yesterday's Lecture

o Nested while loop, struct, enum recap
e Functions!

COMP1511/COMP1911

Today's Lecture

e Function Recap

e Function, Memory and Scope

o Style

e Handy Shorthand

e Arrays (A hurdle topic)

o If we have time, look at some functions with arrays!

COMP1511/COMP1911

Functions Recap

COMP1511/COMP1911

Functions

e A functionis an
o independent
o reusable block of code
o that performs a specific task

COMP1511/COMP1911

Benefits of functions

e Modularity: Breaks complex programs into simpler,
manageable pieces, easier to read and understand

e Reusability: Avoids code duplication, as you can reuse the
functions

o Abstraction: Hides the implementation details and allows you
to focus on higher-level logic.

o Allow us to test and debug smaller chunks of code in isolation

COMP1511/COMP1911 10

Recap: Simple Functions

double add numbers (double x, double y);

int main(void) {
int x = 9;
double answer = add numbers (1.5, x);

printf ("The answer is %1f\n", answer);

return 0;

// This function returns the sum of 2 given doubles
double add numbers (double x, double y) {

double sum;

sum = X + y;

return sum;

COMP1511/COMP1911

11

Memory and Scope

o Blocks of code in C are delimited by a pair if braces {}.
o The body of a function is a common example of a block.

o Generally the scope of a variable is
o Between where the variable is declared
o The end of the block it was declared in

e Variables declared inside functions are called local variables.
e Code demos: memory_scope.c

COMP1511/COMP1911

12

Functions and Local Variables

e Local variables are created when the function called and
destroyed when function returns
e A function’s variables are not accessible outside the function

double add numbers (double x, double y) ({
// sum is a local variable
double sum;
sum = X + y;
return sum;

}

COMP1511/COMP1911

13

Global Variables

e Variables declared outside a function have global scope
o Do NOT use these!

// result is a global variable BAD DO NOT USE IN COMP1511

int result;

int main(void) {
// answer is a local wvariable GOOD
int answer;

return 0;

}

COMP1511/COMP1911

14

Passing by Value

e Primitive types such as int, char, double and also enum and

structs are passed by value

o A copy of the value of the variable is passed into the function
o This increment function is just modifying its own copy of x

o Code demo: pass_by_value.c

void increment (int x) {
// modifies the
// local copy of x

X =x + 1;

COMP1511/COMP1911

15

Passing by Value

int main (void) {
int x = 10;
// passes the value 10
// into the function
increment (x) ;
// x will still be 10
printf ("Main: %d\n", x);

return O;

}

COMP1511/COMP1911

void increment (int x) {

// modifies the

// local copy of x

X =x+ 1;

printf ("Inc:

%d\n", x);

16

Using Functions in Conditions

You can call functions inside your if statements or your while
loops like this:

if (maximum(b, h) < 10) { while (scanf("%d", &n) == 1) {

Note: You can’t do this with functions that have void return types

COMP1511/COMP1911

17

Style

e The code we write is for human eyes

¢ We want to make our code:
o easier to read
o easier to understand

COMP1511/COMP1911

18

Style Guide

o Often different organisations you work for, will have their own
style guides, however, the basics remain the same across
e We have a style guide in 1511 that we encourage you to use to

establish good coding practices early:
o https://cgi.cse.unsw.edu.au/~cs1511/25T3/resources/style_guide.html

COMP1511/COMP1911 19

https://cgi.cse.unsw.edu.au/~cs1511/25T3/resources/style_guide.html

Benefits of Good Style

o less possibility for mistakes

o helps with faster development time

e Yyou also get marks for style in assignments

e if we need to mark your code in the final manually it is good if it
is not a dog's breakfast

COMP1511/COMP1911

20

What is Good Style?
IIMINOT'HIRING HIM e Indentation and Bracketing

Names of variables and
functions

Structuring your code
Nesting

Repetition

Comments
Consistency

HE USES SPACES NOT;TABS !

senedop (v Yyt ey

COMP1511/COMP1911

Bad Style Demo

When you trying to look at
the code you wrote a month ago

IT'S SOME KIND OF ELVISH
&
-
;—

| CAN'T READ IT

COMP1511/COMP1911

Let’s look at
bad_style.c

What are some
things we should fix?

22

Tips: Clean as you go

o Write comments where they are needed
e Name your variables based on what that variable is there to do
e In your block of code surrounded by {}:
o Indent 4 spaces
o Vertically align closing bracket with statement that opened it
e One expression per line
e Consistency in spacing
e Watch your code width (<= 80 characters)
o Watch the nesting of IFs - can it be done more efficiently?
e Break code into functions

COMP1511/COMP1911

23

COMP1511/COMP1911

Some handy shorthand!!

24

Increment and Decrement

// Increment count by 1 // Decrement count by 1
count = count + 1; count = count - 1;
count++; count--;

// Increment count by 5 // Decrement count by 5
count = count + 5; count = count - 5;
count += 5; count -= 5;

COMP1511/COMP1911

25

for loops

e Very similarto while loops!

e You can do everything you
need with a while loop

e for loops arereally just a
short hand for while loops in C

e for loops are very handy for
loops when you know the

number of iterations you need!
o counting loops

COMP1511/COMP1911

Now let's see who you really are

26

For loop structure

—_—
initialisation: expression: increment:
Executed before Evaluated before Executed at the
the loop begins each iteration. end of each
exits loop when iteration
false

for (int count = 0; count < 10; count++) {

//Do something
}

COMP1511/COMP1911

27

while loop vs for loop

These two loops do exactly the same thing!

int 1 = 0;

while (i < 10) { for (int i = 0; 1 < 10;
printf ("$d\n", i); printf ("%d\n", 1i);
it++; }

}

COMP1511/COMP1911

i++) |

28

Arrays

What if you wanted to store many
related values of the same type?

COMP1511/COMP1911

30

Number of Chocolates Eaten

int day 1 =
int day 2 =
int day 3 =
int day 4 =
int day 5 =

PR 9 00 W W BN

int day 6 =
int day 7 = 3;
// Any day with 3 or more is too much!
if (day 1 >= 3){

printf ("Too many chocolates\n");

}
if (day 2 >= 3) {...

Does this seem repetitive? What if | tracked a year’'s worth??!!

COMP1511/COMP1911

Data Structures

o A data structure is a way of organizing and storing data so that
it can be accessed and used efficiently

e In this course we will learn about two very important data
structures:
o Arrays (NOW!)
o Linked Lists (after flexibility week)

e There are other data structures that you will learn about in
further computing courses

e Choosing the right data structure depends on what the problem
is and what you are trying to achieve.

COMP1511/COMP1911 32

Arrays!

e A collection of variables all of the same type (homogenous)
o Think about how this is very different to a struct
e A contiguous data structure
o All data in an array is stored in consecutive memory locations
e Arandom access data structure
o We can access any data in the collection directly without having to
scan through other data elements
e Anindexed structure

o We just have one variable identifier for the whole collection of data

o We can uses indexes to access specific pieces of data

COMP1511/COMP1911

33

Declaring an Array

type of data name of the array size: number of

stored in array items in the array

v

int chocolates eaten[7];

e This declares an array named chocolates_eaten, that can store
/ integers

COMP1511/COMP1911

Declaring and Initialising an Array

// This declares an array named chocolates eaten,
// that can store 7 integers and initialises
// their values to 4, 2, 5, 2 and so on.

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

// This would declare the array and
// initialise all values to 0

int chocolates eaten[7] = {};

COMP1511/COMP1911

35

Declaring and Initialising an Array

// This is illegal and does not compile

// You can only use this initialisation syntax
// when you declare the array

// NOT later

int chocolates eaten[7];

chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

// This is the correct way all in one line

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

COMP1511/COMP1911

36

Visualising an Array

So let's say we have this declared and initialised:

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

This is what it looks like visually:

int int int int int int int

4 2 5 2 0 3 1

0 1 2 3 4 5 6

Note: The array holds 7 elements. Indexes start at 0

COMP1511/COMP1911

37

Accessing Elements in an Array

e You can access any element of the array by using its index
o Indexes start from 0
o Trying to access an index that does not exist, will result in an error

int chocolates eaten[7] = {4, 2, 2, 0, 3, 1};

int int int int int int int
0 1 2 3 4 5 6

chocolates_eaten[2] would access the third element

COMP1511/COMP1911

38

Accessing Elements in an Array

e You can access any element of the array by using its index
o Indexes start from 0
o Trying to access an index that does not exist, will result in an error

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

4 2 5 2 0 3 1

0 1 2 3 4 5 6

chocolates eaten[7] would cause a run-time error

COMP1511/COMP1911

39

A closer look at arrays

e You can't printf() a whole array
o but you can print individual elements
e You can't scanf() a whole array at once
o but you can scanf() individual elements
e You can't assign a whole array to another array variable
o but you can create an array and copy the individual elements

int a[7] = {4, 2, 5, 2, 0, 3, 1};
int b[7] = a; // You can’t do this!

COMP1511/COMP1911

Printing elements in an array

Does this look repetitive?

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

printf("%d ", chocolates eaten[0]) ;

printf ("%d ", chocolates eaten[l]);
printf("%d ", chocolates_ eaten[2]) ;
printf ("%d ", chocolates eaten[3]);

printf ("%d ", chocolates eaten[4]);
printf ("%d ", chocolates eaten[5]);

printf ("%d ", chocolates eaten[6]);

How could we do this in a better way?

COMP1511/COMP1911

41

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int i = 0;
while (1 < 7) {
printf ("%d ", chocolates eaten[i]);

i1++;
}
Start at index 0
chocolates _eaten|[0]
int int int int int int int
0 1 2 3 4 5 6

COMP1511/COMP1911

42

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int i = 0;
while (1 < 7) {
printf ("%d ", chocolates eaten[i]);

i1++;
}
Increment index by 1
chocolates _eaten[1]
int int int int int int int
0 1 2 3 4 5 6

COMP1511/COMP1911

43

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int 1 = 0;
while (i < 7) {
printf ("%d ", chocolates eaten[i]);

i1++;
}
Increment index by 1
chocolates eaten[2]
int int int int int int int
0 1 2 3 4 5 6

COMP1511/COMP1911

44

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int i = 0;
while (1 < 7) {
printf ("%d ", chocolates eaten[i]);

i1++;
}
Increment index by 1
chocolates _eaten[3]
int int int int int int int
0 1 2 3 4 5 6

COMP1511/COMP1911

45

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int i = 0;
while (1 < 7) {
printf ("%d ", chocolates eaten[i]);

i1++;
}
Increment index by 1
chocolates eaten[4]
int int int int int int int
4 2 5 2 3 1
0 1 2 3 4 5 6

COMP1511/COMP1911

46

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int i = 0;
while (1 < 7) {
printf ("%d ", chocolates eaten[i]);

i1++;
}
Increment index by 1
chocolates _eaten[5]
int int int int int int int
4 2) 2 0 1
0 1 2 3 4 5 6

COMP1511/COMP1911

47

Traversing an Array

int chocolates eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (1 < 7) {

printf ("%d ", chocolates eaten[i]);

i1++;
}
Increment index by 1
chocolates eaten[6]
int int int int int int int
4 2) 2 0 3
0 1 2 3 4 5 6

COMP1511/COMP1911

Demo arrays!

simple array.c
numbers.c
scan in numbers
print array, (while loop and for loop)
sum,
add 10 to all values,

numbers_functions.c

COMP1511/COMP1911

49

Arrays and Functions

e We can pass arrays into functions!
e The function needs a way of knowing the size of the array

// Can pass in array of int of any size

void print array(int size, int array[]);

COMP1511/COMP1911

50

Arrays and Functions

void print array(int size, int array[]);
int main(void) {

int marks[] = {9, 8, 10, 2, 7};

int ages[] = {21, 42, 11};

print array (5, marks);

print array (3, ages):;

return O;

}
void print array(int size, int array[]) ({
for (int i = 0; 1 < size; i++) {
printf ("%d ", array[i])

}

COMP1511/COMP1911

51

Arrays and Functions

e Functions do not get a copy of all the array values passed into
them.

e They can access the original array from the calling function

e This means they can modify the values directly from the
function

e More about this in future weeks!

COMP1511/COMP1911

52

Arrays and Functions

e Wecanpassan int main(void) ({
array into 3 int marks[SIZE];
function and scan_marks (SIZE, marks);
initialise all the
values like this!!

print marks (SIZE, marks);

return 0;

[N—

void scan marks(int size, int array[]) {
for (int i = 0; 1 < size; i++) {

scanf ("%d ", &arrayl[i]);

COMP1511/COMP1911

53

Arrays and Functions

e Trying to return an array
from a function by doing
something like this looks
ok but fails spectacularly!

e We will explain this in
more detail later in the
course

COMP1511/COMP1911

// You can’t return an array like
// this from a function
int[] scan marks(void) ({
int array[SIZE];
for (int i = 0; i < SIZE; i++) {
scanf ("%d ", &arrayl[i])
}

return array;

54

What did we learn today?

e Functions recap (memory_scope.c pass_by_value.c

scanf_loop.c)
e Arrays (simple_array.c numbers.c)
e Arrays with Functions (numbers_functions.c)

COMP1511/COMP1911

55

Next Week

e Lectures:
o 2D arrays
o strings
o Assignment 1 will be released next week
o Material covered in lectures next week will be very important

COMP1511/COMP1911

56

Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your

learning experience. https://forms.office.com/r/PcCEMQSXP61

COMP1511/COMP1911

57

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

58

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

