
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 3 Lecture 2

Arrays

1

COMP1511/COMP1911

Census Date

About Census Dates | UNSW Current Students

2

https://www.student.unsw.edu.au/census

COMP1511/COMP1911

Public Holiday on Monday
● Booking for tut/lab
● Recording for lecture
● Lab 3 due - week 4 tuesday 6pm
● Lab 4 due - week 5 tuesday 6pm
● Assignment released early week 4

3

COMP1511/COMP1911

● Like a Hybrid tutorial/lab session
○ structured with lab style questions

● Forum post coming soon with more information!!

Revision Sessions Week 4

4

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_3/

Disclaimer:

Some live lecture code is not cleaned up and polished!!!

It may have some things that are not 100% perfect style.

I also sometimes have extra comments explaining how

C works that would not be needed usually.

Link to Week 3 Live Lecture Code

5

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_3/

COMP1511/COMP1911

Yesterday’s Lecture
● Nested while loop, struct, enum recap
● Functions!

6

COMP1511/COMP1911

Today’s Lecture
● Function Recap
● Function, Memory and Scope
● Style
● Handy Shorthand
● Arrays (A hurdle topic)
● If we have time, look at some functions with arrays!

7

COMP1511/COMP1911

Functions Recap

8

COMP1511/COMP1911

● A function is an
○ independent
○ reusable block of code
○ that performs a specific task

Functions

9

COMP1511/COMP1911

● Modularity: Breaks complex programs into simpler,
manageable pieces, easier to read and understand

● Reusability: Avoids code duplication, as you can reuse the
functions

● Abstraction: Hides the implementation details and allows you
to focus on higher-level logic.

● Allow us to test and debug smaller chunks of code in isolation

Benefits of functions

10

COMP1511/COMP1911

Recap: Simple Functions

11

double add_numbers (double x, double y);

int main(void) {

 int x = 9;

 double answer = add_numbers(1.5, x);

 printf("The answer is %lf\n", answer);

 return 0;

}

// This function returns the sum of 2 given doubles

double add_numbers (double x, double y) {

 double sum;

 sum = x + y;

 return sum;

}

COMP1511/COMP1911

● Blocks of code in C are delimited by a pair if braces {}.
○ The body of a function is a common example of a block.

● Generally the scope of a variable is
○ Between where the variable is declared
○ The end of the block it was declared in

● Variables declared inside functions are called local variables.
● Code demos: memory_scope.c

Memory and Scope

12

COMP1511/COMP1911

● Local variables are created when the function called and
destroyed when function returns

● A function’s variables are not accessible outside the function

Functions and Local Variables

13

double add_numbers(double x, double y) {

 // sum is a local variable

 double sum;

 sum = x + y;

 return sum;

}

COMP1511/COMP1911

● Variables declared outside a function have global scope
○ Do NOT use these!

Global Variables

14

// result is a global variable BAD DO NOT USE IN COMP1511

int result;

int main(void) {

 // answer is a local variable GOOD

 int answer;

 return 0;

}

COMP1511/COMP1911

● Primitive types such as int, char, double and also enum and
structs are passed by value
○ A copy of the value of the variable is passed into the function
○ This increment function is just modifying its own copy of x
○ Code demo: pass_by_value.c

Passing by Value

15

void increment(int x) {

 // modifies the

 // local copy of x

 x = x + 1;

}

COMP1511/COMP1911

Passing by Value

16

int main(void) {

 int x = 10;

 // passes the value 10

 // into the function

 increment(x);

 // x will still be 10

 printf("Main: %d\n", x);

 return 0;
}

void increment(int x) {

 // modifies the

 // local copy of x

 x = x + 1;

 printf("Inc: %d\n", x);

}

1110

COMP1511/COMP1911

Using Functions in Conditions

17

You can call functions inside your if statements or your while
loops like this:

while (scanf("%d", &n) == 1) {

 ...

}

if (maximum(b, h) < 10) {

 ...

}

Note: You can’t do this with functions that have void return types

COMP1511/COMP1911

● The code we write is for human eyes
● We want to make our code:

○ easier to read
○ easier to understand

Style

18

COMP1511/COMP1911

● Often different organisations you work for, will have their own
style guides, however, the basics remain the same across

● We have a style guide in 1511 that we encourage you to use to
establish good coding practices early:
○ https://cgi.cse.unsw.edu.au/~cs1511/25T3/resources/style_guide.html

Style Guide

19

https://cgi.cse.unsw.edu.au/~cs1511/25T3/resources/style_guide.html

COMP1511/COMP1911

● less possibility for mistakes
● helps with faster development time
● you also get marks for style in assignments
● if we need to mark your code in the final manually it is good if it

is not a dog’s breakfast

Benefits of Good Style

20

COMP1511/COMP1911

● Indentation and Bracketing
● Names of variables and

functions
● Structuring your code
● Nesting
● Repetition
● Comments
● Consistency

What is Good Style?

21

MEME

COMP1511/COMP1911

Bad Style Demo

22

Let’s look at
bad_style.c

What are some
things we should fix?

COMP1511/COMP1911

● Write comments where they are needed
● Name your variables based on what that variable is there to do
● In your block of code surrounded by {}:

○ Indent 4 spaces
○ Vertically align closing bracket with statement that opened it

● One expression per line
● Consistency in spacing
● Watch your code width (<= 80 characters)
● Watch the nesting of IFs - can it be done more efficiently?
● Break code into functions

Tips: Clean as you go

23

COMP1511/COMP1911

Some handy shorthand!!

24

COMP1511/COMP1911

Increment and Decrement

25

// Increment count by 1

count = count + 1;

count++;

// Decrement count by 1

count = count - 1;

count--;

// Increment count by 5

count = count + 5;

count += 5;

// Decrement count by 5

count = count - 5;

count -= 5;

COMP1511/COMP1911

● Very similar to while loops!
● You can do everything you

need with a while loop
● for loops are really just a

short hand for while loops in C
● for loops are very handy for

loops when you know the
number of iterations you need!
○ counting loops

for loops

26

COMP1511/COMP1911

For loop structure

27

for (int count = 0; count < 10; count++) {

 //Do something

}

initialisation:

Executed before

the loop begins

expression:

Evaluated before

each iteration.

exits loop when

falsee

increment:

Executed at the

end of each

iteration

COMP1511/COMP1911

These two loops do exactly the same thing!

while loop vs for loop

28

int i = 0;

while (i < 10) {

 printf("%d\n", i);

 i++;

}

for (int i = 0; i < 10; i++) {

 printf("%d\n", i);

}

COMP1511/COMP1911

Arrays

29

COMP1511/COMP1911

What if you wanted to store many
related values of the same type?

30

COMP1511/COMP1911

Number of Chocolates Eaten

31

int day_1 = 2;

int day_2 = 3;

int day_3 = 3;

int day_4 = 5;

int day_5 = 7;

int day_6 = 1;

int day_7 = 3;

// Any day with 3 or more is too much!

if (day_1 >= 3){

 printf("Too many chocolates\n");

}

if (day_2 >= 3) {...

Does this seem repetitive? What if I tracked a year’s worth??!!

COMP1511/COMP1911

● A data structure is a way of organizing and storing data so that
it can be accessed and used efficiently

● In this course we will learn about two very important data
structures:
○ Arrays (NOW!)
○ Linked Lists (after flexibility week)

● There are other data structures that you will learn about in
further computing courses

● Choosing the right data structure depends on what the problem
is and what you are trying to achieve.

Data Structures

32

COMP1511/COMP1911

● A collection of variables all of the same type (homogenous)
○ Think about how this is very different to a struct

● A contiguous data structure
○ All data in an array is stored in consecutive memory locations

● A random access data structure
○ We can access any data in the collection directly without having to

scan through other data elements
● An indexed structure

○ We just have one variable identifier for the whole collection of data
○ We can uses indexes to access specific pieces of data

Arrays!

33

COMP1511/COMP1911

Declaring an Array

34

int chocolates_eaten[7];

type of data

stored in array

name of the array size: number of

items in the array

● This declares an array named chocolates_eaten, that can store
7 integers

COMP1511/COMP1911

Declaring and Initialising an Array

35

// This declares an array named chocolates_eaten,

// that can store 7 integers and initialises

// their values to 4, 2, 5, 2 and so on.

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};

// This would declare the array and

// initialise all values to 0

int chocolates_eaten[7] = {};

COMP1511/COMP1911

Declaring and Initialising an Array

36

// This is illegal and does not compile

// You can only use this initialisation syntax

// when you declare the array

// NOT later

int chocolates_eaten[7];

chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};

// This is the correct way all in one line

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};

COMP1511/COMP1911

So let's say we have this declared and initialised:

This is what it looks like visually:

Note: The array holds 7 elements. Indexes start at 0

Visualising an Array

37

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0
○ Trying to access an index that does not exist, will result in an error

chocolates_eaten[2] would access the third element

Accessing Elements in an Array

38

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0
○ Trying to access an index that does not exist, will result in an error

chocolates_eaten[7] would cause a run-time error

Accessing Elements in an Array

39

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can't printf() a whole array
○ but you can print individual elements

● You can't scanf() a whole array at once
○ but you can scanf() individual elements

● You can’t assign a whole array to another array variable
○ but you can create an array and copy the individual elements

A closer look at arrays

40

int a[7] = {4, 2, 5, 2, 0, 3, 1};

int b[7] = a; // You can’t do this!

COMP1511/COMP1911

Does this look repetitive?

Printing elements in an array

41

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
printf("%d ", chocolates_eaten[0]);
printf("%d ", chocolates_eaten[1]);

printf("%d ", chocolates_eaten[2]);

printf("%d ", chocolates_eaten[3]);

printf("%d ", chocolates_eaten[4]);

printf("%d ", chocolates_eaten[5]);

printf("%d ", chocolates_eaten[6]);

How could we do this in a better way?

COMP1511/COMP1911

Traversing an Array

42

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Start at index 0
chocolates_eaten[0]

COMP1511/COMP1911

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Traversing an Array

43

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolates_eaten[1]

COMP1511/COMP1911

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Traversing an Array

44

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolates_eaten[2]

COMP1511/COMP1911

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Traversing an Array

45

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolates_eaten[3]

COMP1511/COMP1911

Traversing an Array

46

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Increment index by 1
chocolates_eaten[4]

COMP1511/COMP1911

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Traversing an Array

47

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolates_eaten[5]

COMP1511/COMP1911

int chocolates_eaten[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolates_eaten[i]);
 i++;
}

Traversing an Array

48

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolates_eaten[6]

COMP1511/COMP1911

 Demo arrays!
simple_array.c
numbers.c

scan in numbers
print array, (while loop and for loop)
sum,
add 10 to all values,

numbers_functions.c

49

COMP1511/COMP1911

Arrays and Functions
● We can pass arrays into functions!
● The function needs a way of knowing the size of the array

50

// Can pass in array of int of any size

void print_array(int size, int array[]);

COMP1511/COMP1911

Arrays and Functions

51

void print_array(int size, int array[]);

int main(void) {
int marks[] = {9, 8, 10, 2, 7};

 int ages[] = {21, 42, 11};

 print_array(5, marks);
 print_array(3, ages);
 return 0;
}
void print_array(int size, int array[]) {
 for (int i = 0; i < size; i++) {
 printf("%d ", array[i]);
 }
}

COMP1511/COMP1911

Arrays and Functions

52

● Functions do not get a copy of all the array values passed into
them.

● They can access the original array from the calling function
● This means they can modify the values directly from the

function
● More about this in future weeks!

COMP1511/COMP1911

Arrays and Functions

● We can pass an
array into a
function and
initialise all the
values like this!!

int main(void) {

 int marks[SIZE];

 scan_marks(SIZE, marks);

 print_marks(SIZE, marks);

 return 0;

}

void scan_marks(int size, int array[]) {

 for (int i = 0; i < size; i++) {

 scanf("%d ", &array[i]);

 }

}

53

COMP1511/COMP1911

Arrays and Functions
● Trying to return an array

from a function by doing
something like this looks
ok but fails spectacularly!

● We will explain this in
more detail later in the
course

54

// You can’t return an array like

// this from a function

int[] scan_marks(void) {

 int array[SIZE];

 for (int i = 0; i < SIZE; i++) {

 scanf("%d ", &array[i]);

 }

 return array;

}

COMP1511/COMP1911 55

● Functions recap (memory_scope.c pass_by_value.c
scanf_loop.c)

● Arrays (simple_array.c numbers.c)
● Arrays with Functions (numbers_functions.c)

What did we learn today?

COMP1511/COMP1911 56

● Lectures:
○ 2D arrays
○ strings

● Assignment 1 will be released next week
○ Material covered in lectures next week will be very important

Next Week

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

57

https://forms.office.com/r/PcEMQSXP61

COMP1511/COMP1911 58

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

