
COMP1511/COMP1911

COMP1511 Programming Fundamentals

FUNctions and Style

Week 3 Lecture 1

COMP1511/COMP1911

Last Week
● if statements
● scanf returns!
● while loops
● nested while loops
● structs
● enums

2

COMP1511/COMP1911

This Week
● Reminder: Lab 2 due tonight 6pm.

● Help Session Schedule
○ https://cgi.cse.unsw.edu.au/~cs1511/25T3/help-sessions
○ Please note that help sessions are not in labs and are BYOD (Bring

Your Own Device) sessions. 💻
○ Please check out this link for more information

about help sessions(Teams join code:ijnb1b0)

3

https://cgi.cse.unsw.edu.au/~cs1511/25T3/help-sessions
https://teams.microsoft.com/l/team/19%253AJ7O_XN72j38foNlmNC3tMjrpHHmY9y_cELhGtKvo0n41%2540thread.tacv2/conversations?groupId=94f71ed5-ca5a-4c98-92b1-bcbcc4ab650b&tenantId=3ff6cfa4-e715-48db-b8e1-0867b9f9fba3

COMP1511/COMP1911

Next Monday
● Public Holiday

○ Pre-recorded lecture will be uploaded
○ Students in monday tutorial/labs, will be able to get tickets to

attend other time slot in the week.
○ Ticketing Link : https://buytickets.at/comp1511unsw/1857310

(Access code is “COMP1511”)

○ Lab 3 Due Week 4 Tuesday 6pm instead of Monday 6pm

4

https://buytickets.at/comp1511unsw/1857310

COMP1511/COMP1911

Today’s Lecture
● Recap of nested while loops, structs, enums
● structs with enums members
● Functions
● Style

Most students start to find things are getting hard
Be patient and keep practicing.

5

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_3/

Link to Week 3 Live Lecture Code

6

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_3/

COMP1511/COMP1911

A Brief Recap

7

● Nested While Loops
pattern.c

● Structs
struct_student.c
enum_weekdays.c

COMP1511/COMP1911

● We can have enum members in our structs!

struct with enum members!

8

enum student_status {

 ENROLLED, WITHDRAWN, LEAVE

};

struct student {

 enum student_status status;

 double wam;

};

struct student z123456;

z123456.status = ENROLLED;

z123456.wam = 95.9;

COMP1511/COMP1911

pokemon.c

● We can have enum members in our structs!
● Create a enum for pokemon types FAIRY, WATER, FIRE etc
● Create a struct called pokemon with a field for the type and

some other relevant fields
● Make a pokemon variable and set it with data
● Print out the pokemon data

Coding Example:

9

COMP1511/COMP1911

What is a function?

10

COMP1511/COMP1911

● A function is an
○ independent
○ reusable block of code
○ that performs a specific task

Functions

11

COMP1511/COMP1911

Have you seen functions before?

12

COMP1511/COMP1911

● Yes you have seen functions before!
● You have been writing main functions
● You have also used functions from the stdio.h library

○ printf and scanf
● There are lots of other libraries and library functions
● And we can write our own functions too

Functions

13

COMP1511/COMP1911

● We do not need to know how the code in the function works - just
what it does and how to use it.

● To use a function, we do a function call
○ Pass in the correct sequence of inputs (arguments)

■ the correct type
■ the correct order

○ If our function has a return value
■ we may wish to use or store it

Using Functions

14

COMP1511/COMP1911

● This is a function prototype
○ it gives programmers and the compiler information about how the

function can be used

Function Prototypes

15

int maximum(int x, int y);

return type:

What type

does this

 function return?

Function name:

What is the name

of the function?

e

Parameters:

What inputs do I

need to give my

function

COMP1511/COMP1911

Here is an example of how we could use our function.

Functions calls

16

int maximum(int x, int y);

int main(void) {
int num = 7;
int max = maximum(10, num);

 printf("The maximum value is %d\n", max);

return 0;
}

COMP1511/COMP1911

This is an implementation of our function!

Function Definition

17

// Returns the maximum of the given values x and y
int maximum(int x, int y) {
 int max;
 if (x > y) {
 max = x;
 } else {
 max = y;
 }
 // returns an int value
 return max;
}

COMP1511/COMP1911

We want to create a function to print out a square of a given size.

For example this is a square of size 4

What would the prototype be?

Let’s try writing another one

18

COMP1511/COMP1911

Our function does not need to return any values

It just prints things out to the terminal.

This is what our prototype might look like

void functions

19

// Prints a square of ‘*’ characters

// of the given size

void print_square(int size);

Note: Functions with void return types are sometimes called procedures

COMP1511/COMP1911

void functions

20

void print_square(int size);

int main(void) {
int square_size;

printf("Enter the size: ");

scanf("%d", &square_size);

print_square(square_size);

return 0;
}

void print_square(int size){
int row = 0;

 while (row < size) {
 int col = 0;
 while (col < size) {
 printf("#");
 col = col + 1;
 }
 printf("\n");
 row = row + 1;
 }
}

COMP1511/COMP1911

We can use the
keyword void in the
parameter list too!

Functions that need no arguments

21

void print_warning(void);

int main(void) {
print_warning();
return 0;

}
// Display a helpful warning on the terminal

void print_warning(void) {

 printf("#########################\n");

 printf("Warning: Don't plagiarise\n");

 printf("#########################\n");

}

COMP1511/COMP1911

● Functions have parameters
○ define what type of arguments (inputs) the functions need
○ void in the parameter list means it needs no arguments

● Functions may return a single value
○ The type of the function is the type that it returns
○ A return type of void means it does not return a value

■ return can still be used to end the function without a return value

Recap: Function Parameters and return

22

COMP1511/COMP1911

● The code of a function is only executed when requested via a
function call

● When a function is called
○ Current code execution is halted
○ Execution of the function body begins
○ Reaching the last statement of the function or reaching a return

statement stops execution of a function
● When the function completes, execution resumes at the

instruction after the function call.

Function Calls and Execution Flow

23

COMP1511/COMP1911

● It is good style to have
○ main function at the top of the file
○ implement additional user defined functions below it.

● To do this we need to write prototypes above main function
○ the compiler processes the program code top-down
○ This lets the compiler know that the definition (implementation) for

these functions can be found somewhere else.
○ A compile error occurs if a function call is encountered before the

function prototype.

Prototypes and Style

24

COMP1511/COMP1911

● Every function must have a comment placed before the function
implementation describing
○ the purpose of the function
○ any side-effects the function has

● As always, choose meaningful names for your functions

Function Comments and Style

25

COMP1511/COMP1911

area_triangle.c
print_pokemon.c

Code demo

26

COMP1511/COMP1911

● Modularity: Breaks complex programs into simpler,
manageable pieces, easier to read and understand

● Reusability: Avoids code duplication, as you can reuse the
functions

● Abstraction: Hides the implementation details and allows you
to focus on higher-level logic.

● Allow us to test and debug smaller chunks of code in isolation

Benefits of functions

27

COMP1511/COMP1911

Style

28

COMP1511/COMP1911

● The code we write is for human eyes
● We want to make our code:

○ easier to read
○ easier to understand

Style

29

COMP1511/COMP1911

● less possibility for mistakes
● helps with faster development time
● you also get marks for style in assignments
● if we need to mark your code in the final manually it is good if it

is not a dog’s breakfast

Benefits of Good Style

30

COMP1511/COMP1911

● Indentation and Bracketing
● Names of variables and

functions
● Structuring your code
● Nesting
● Repetition
● Comments
● Consistency

What is Good Style?

31

MEME

COMP1511/COMP1911

Bad Style Demo

32

Let’s look at
bad_style.c
● What are some

things we should
fix?

COMP1511/COMP1911

● Often different organisations you work for, will have their own
style guides, however, the basics remain the same across

● Your assignment will have style marks attached to it
● We have a style guide in 1511 that we encourage you to use to

establish good coding practices early:
○ https://cgi.cse.unsw.edu.au/~cs1511/25T3/resources/style_guide.html

Style Guide

33

https://cgi.cse.unsw.edu.au/~cs1511/25T3/resources/style_guide.html

COMP1511/COMP1911

● Write comments where they are needed
● Name your variables based on what that variable is there to do
● In your block of code surrounded by {}:

○ Indent 4 spaces
○ Vertically align closing bracket with statement that opened it

● One expression per line
● Consistency in spacing
● Watch your code width (<= 80 characters)
● Watch the nesting of IFs - can it be done more efficiently?
● Break code into functions

Tips: Clean as you go

34

COMP1511/COMP1911

● If you do not understand something, do not panic!
● It is perfectly normal to not understand a concept the first time

it is explained to you
○ ask questions in lectures
○ try and read over the information again
○ rewatch lectures
○ ask questions in the tutorial and the lab
○ ask questions on the forum
○ go to help sessions
○ go to revision sessions

Things are getting harder…

35

COMP1511/COMP1911

● If you can't solve a problem
○ break down the problem into smaller and smaller steps until there

is something that you can do
○ ask us lots of questions!

● Remember learning is hard and takes time
● Solving problems is hard and takes practice
● We are here to help you!!!

Things are getting harder…

36

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

37

https://forms.office.com/r/qK0Z00Y0gX

COMP1511/COMP1911 38

● Recap of while loops, nested while loops
○ pattern.c

● Recap of structs
○ struct_student.c

● Enums
○ enum_weekdays.c

● Enums and structs
○ pokemon.c

What did we learn today?

COMP1511/COMP1911 39

● Functions
○ max_function.c square_function.c warning_function.c

area_triangle.c pokemon_functions.c
● Style

○ bad_style.c

Coming up next lecture….
Function recap, more about functions and a very important topic -
arrays.

What did we learn today?

COMP1511/COMP1911 40

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T3/COMP1511/
mailto:cs1511@unsw.edu.au

