
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Loops
Custom Data Types

Week 2 Lecture 2

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/current/resources/revision_videos.html

Revision Videos

2

● We’ve created a series of short-form videos
to help you quickly revise important topics
from the course!

● These videos provide concise,
easy-to-understand explanations of core
concepts in the course, perfect for
refreshing your memory!

● Let us know if there are any topics you’d like
us to cover next!

https://cgi.cse.unsw.edu.au/~cs1511/current/resources/revision_videos.html

COMP1511/COMP1911

Help Sessions

Starting next week!
Schedule out soon!

3

COMP1511/COMP1911

Yesterday’s Lecture
● Conditions and if statements

○ Relational Operators, Logical Operators
○ if-else, chaining if-else, nested if statements

● While loops
○ Infinite loops
○ Intro to counting loops

4

COMP1511/COMP1911

Today’s Lecture
● More single while loops
● Nested While Loops
● Custom data types

○ structs
○ enums

5

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_2/

Link to Week 2 Live Lecture Code

6

https://cgi.cse.unsw.edu.au/~cs1511/25T3/code/week_2/

COMP1511/COMP1911

scanf_return.c

Recap scanf return

7

COMP1511/COMP1911

● counting loops
○ The number of iterations is known
○ Use a variable as a counter to control how many times a loop runs

● conditional loops
○ We may not know how many times we will need to loop
○ Conditions terminate the loop based on calculations or user input

● sentinel loops
○ Special case of conditional loops
○ A sentinel loop continues to execute until a special value (the

sentinel value) is encountered.

3 Ways of Controlling while loops

8

COMP1511/COMP1911

● Use a loop control variable (“loop counter”) to count loop
repetitions.
○ We stop when the loop reaches a certain limit.

● Useful when we know how many iterations we want.

Counting while loops

9

 // 1. Initialise loop counter before the loop

 int counter = 0;

 while (counter < 5) { // 2. check loop counter condition

 printf("Here we go loop de loop!\n");

 counter = counter + 1; // 3. update loop counter

 }

COMP1511/COMP1911

● Iterate as long as your condition is still true
● Used when we don't know how many times we need to loop

Conditional Loops

10

// 1. Initialise the loop control variable
int total_kombucha_ml = 0;
int kombucha_ml;
while (total_kombucha_ml < MAX_KOMBUCHA) { // 2. Test the loop condition
 printf("Please enter the ml of kombucha: ");
 scanf("%d", &kombucha_ml);

// 3. Update loop control variable
 total_kombucha_ml = total_kombucha_ml + kombucha_ml;
}
printf("Warning! You have had %dml today!!\n", total_kombucha_ml);

COMP1511/COMP1911

● Process data until reaching a special value (sentinel value)
○ Special case of conditional loop

Sentinel Loops

11

int number = 0;

int end_loop = 0; // 1. Initialise the loop control variable

while (end_loop == 0) { // 2. Test the loop condition

 scanf("%d", &number);

 if (number < 0) { // We want a negative value to end the loop

 end_loop = 1; // 3. Update the loop control variable

 } else {

 printf("You entered %d\n", number);

 }

}

COMP1511/COMP1911

while_count.c
while_condition.c
while_sentinel.c

Write a program that reads integers from the user and sums them
until a non-integer input is encountered
while_scanf_sum.c

Code Demo

12

COMP1511/COMP1911

● A loop in a loop
● If we put a loop inside a loop . . .
● Each time a loop runs

○ It runs the other loop
● The inside loop ends up running

a LOT of times
● How many times does the

second hand go around the clock
for every minute? For every hour?

Nested While Loops

13

COMP1511/COMP1911

How could we print out
something like this?

Why are nested while loops useful?

14

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5

Or this?

COMP1511/COMP1911

Code Demo Nested While Loop
grid.c
pyramid.c
clock.c (if we have time)

15

COMP1511/COMP1911

Quick Break. Back Soon…

16

COMP1511/COMP1911

Custom Data Types

17

COMP1511/COMP1911

Organising related data

18

Is there a better way of storing related data?

char my_first_initial = 'A';

char my_last_initial = 'F';

int my_age = 23;

double my_lab_mark = 2.4;

char brianna_first_initial = 'B';

char brianna_last_initial = 'K';

int brianna_age = 21;

double brianna_lab_mark = 9.9;

COMP1511/COMP1911

Organising related data

19

Is there a better way of storing related data?

char my_first_initial = 'A';

char my_last_initial = 'F';

int my_age = 23;

double my_lab_mark = 2.4;

char brianna_first_initial = 'B';

char brianna_last_initial = 'K';

int brianna_age = 21;

double brianna_lab_mark = 9.9;

We could group the
data related to a
person

COMP1511/COMP1911

Organising related data

20

Is there a better way of storing related data?

int x1 = 0;

int y1 = 0;

int z1 = 0;

int x2 = 10;

int y2 = -5;

int z2 = 5;

COMP1511/COMP1911

int x1 = 0;

int y1 = 0;

int z1 = 0;

int x2 = 10;

int y2 = -5;

int z2 = 5;

Organising related data

21

Is there a better way of storing related data?

We could group the
data related to a
coordinate

COMP1511/COMP1911

User defined Data Type: struct

22

● So far, we have used built-in C data types (int, char, double)
● These store a single item of that type
● structs allow us to define our own data types (structures) to

store a collection of types
● Before we can create struct variables, we need to define the

struct (outside the main)
○ Note this does not create a variable or set aside any memory.
○ It just defines the type.

● Then we declare and use struct variable/s

COMP1511/COMP1911

● We define our structs before our main function.
● structs are types that we design, made up of data elements

that we decide belong together
○ we call these elements members or fields
○ we need to define a type and name for each member

1. Defining a struct

23

struct student {

 char first_initial;

 char last_initial;

 int age;

 double lab_mark;

};

COMP1511/COMP1911

● Creating variables using your custom struct type

2. Declaring a struct variable

24

struct student {

 char first_initial;

 char last_initial;

 int age;

 double lab_mark;

};

int main(void) {

// Declare a variable

// of type struct student

struct student brianna;

COMP1511/COMP1911

● We access a member of a struct by using the dot operator .

3. Initialising struct data

25

int main(void) {

// Declare a variable

// of type struct student

struct student brianna;

// Initialise the members of

// your struct variable

 brianna.first_initial = 'B';

 brianna.last_initial = 'K';

brianna.age = 21;

brianna.lab_mark = 9.9;

struct student {

 char first_initial;

 char last_initial;

 int age;

 double lab_mark;

};

COMP1511/COMP1911

● Increment the age field
● Read in updated lab mark

from the user.
● Print out struct data

Exercise: Using structs

26

int main(void) {

// Declare a variable

// of type struct student

struct student brianna;

// Initialise the members of

// your struct variable

 brianna.first_initial = 'B';

 brianna.last_initial = 'K';

brianna.age = 21;

brianna.lab_mark = 9.9;

struct student {

 char first_initial;

 char last_initial;

 int age;

 double lab_mark;

};

COMP1511/COMP1911

● Enter data for a point
● Print out the point struct

Exercise: Using structs

27

struct coordinate {

 int x;

 int y;

int z;

};

int main(void) {

// Declare 2 variables of

 // type struct coordinate

 struct coordinate point_1;

 struct coordinate point_2;

COMP1511/COMP1911

● Data types that allow you to assign names to integer constants
to make it easier to read and maintain your code
○ By default the enumerated constants will have int values 0, 1, 2, …
○ Note you can’t have two enums with the same constant names

Enumerations

28

// Example of the syntax used to define an enum

enum enum_name {STATE0, STATE1, STATE2, ...};

// E.g. define an enum for day of the week
enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

// E.g. define an enum with specified int values
enum status_code {OK = 200, NOT_FOUND = 404};

COMP1511/COMP1911

enum code example

29

// Define an enum with days of the week

// make sure it is outside and before the main function

// MON will have value 0, TUE 1, WED 2, etc

enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

int main (void) {

 enum weekdays day;

 day = SAT;

 // This will print out 5

 printf("The day number is %d\n", day);

 return 0;

}

COMP1511/COMP1911

● enums are useful when we want to define a specific fixed set of
constants

● The advantages of using enums over #defines
○ Enumerations are automatically assigned values, which makes

the code easier to read
■ Think of the case where you have a large number of related

constants
● #define are useful for other contexts such as constants that are

not integers or stand alone constant values

enum vs #define

30

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

31

https://forms.office.com/r/F56gV5WHM7

COMP1511/COMP1911 32

● While loops
○ while_count.c, while_conditional.c,

while_sentinel.c, while_scanf_sum.c
● Nested while loops

○ grid.c, pyramid.c, clock.c
● structs

○ struct_student.c, struct_points.c
● enums

○ enum_weekdays.c

What did we learn today?

COMP1511/COMP1911 33

● Functions
● Style

Next week

COMP1511/COMP1911 34

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

