
Pointers

Help Sessions
Check timetable!

Revision sessions
reminder

Pointers

Memory

All data (variables) are
stored in memory

–

You can think of memory
as a big grid

–

Each segment of this
grid has a unique
identifier

–

Visualising memory with
addresses

So far, we have
only dealt with
values

We can also
access the
address

–

By storing that
address in a
variable, we
have a
pointer

–

Pointer Syntax
To declare a pointer
<type> *
<name_of_variable>

^ The * means don't
request the storage to store
<type> , but requests
memory to store a memory
address of <type>

Syntax example:
int *pointer

struct student
*student

Visualise pointer
declaration

// declare a pointer to an
integer
int *number; // operating
system returns 0x17

Address of operator &

&

What if we want to query
what the address of a
variable is?

–

We can use the
address_of operator:

–

Syntax of address of: &
<variable>

Example

int number = 2;
&number // the address
of number

int number = 2;

int *pointer_to_number =
&number

Dereferencing

Dereferencing is simply
accessing the value at the
address of a pointer

–

It uses the * symbol again
(which causes confusion)

–

*my_int_pointer -> will
get the integer at the
address location

–

Three components to pointers in code

int main(void) {
 // Declare an integer
 int my_age = 23;

 // Declare an integer pointer
 // Assign it the address of my_age
 int *pointer_to_my_age = &my_age;

 // Print out the address and value
at the pointer
 printf("Pointer is: %p value is:
%d\n", pointer_to_my_age,
*pointer_to_my_age)
 return 0;
}

Common mistakes

int number;
int *number_ptr;

number_ptr =
number;

1.

*number_ptr =
&number;

2.

Syntax cheat sheet

Declare a pointer: int
*int_pointer;

–

Address of:
&my_variable;

–

Dereference (Get the
value at a pointer):
*int_pointer;

–

Demo

Goals:

Create a variable
Get the address of that

variable
Create a pointer

variable
Use it!

But JAKE, why are they
USEFUL

Let's look at an example
with pointers and
parameters

–

How can we edit a
variable within a
function?

Pass by reference*

#include <stdio.h>

void change_value(int *x) {
 *x = *x * 2;
 }

int main(void) {
 int x = 5;
 change_value(&x);
 printf("%d\n", x);

 return 0;
}

Technically pass-reference-by-value
but it's fine!

–

In the previous example, by
passing the memory
address, we can change
the value in place and main
will point to the updated
value!

pointers and arrays

void double_array_of_ints(int
data[], int size) {
 for (int I = 0; I < size; I++)
{
 data[i] = data[i] * 2;
}

int main(void) {
 int data[5] = {1, 2, 3, 4, 5};
 double_array_of_ints(data, 5);
 //is data doubled?
}

^ does data in main contain the
doubled values?

How?

Arrays decay to pointers

Arrays point to the
memory location which
contains the first element

–

As arrays are contiguous,
we can then move through
the memory sequentially
to find the next values

–

Very cool!–

Feedback

