
Pointers

Help Sessions
Check timetable!

Revision sessions reminder

Pointers

Memory

All data (variables) are stored in
memory

–

You can think of memory as a big
grid

–

Each segment of this grid has a
unique identifier

–

Visualising memory with addresses

The actual data is stored in binary

So far, we have only
dealt with values

We can also
access the address

–

By storing that
address in a
variable, we have a
pointer

–

Pointer Syntax
To declare a pointer
<type> *<name_of_variable>

^ The * means don't request the
storage to store <type> , but
requests memory to store a memory
address of <type>

Syntax example:
int *pointer

struct student *student

Visualise pointer declaration

// declare a pointer to an integer
int *number; // operating system
returns 0x17

Address of operator &

&

What if we want to query what the
address of a variable is?

–

We can use the address_of
operator:

–

Syntax of address of: &
<variable>

Example

int number = 2;
&number // the address of number

int number = 2;

int *pointer_to_number = &number

Dereferencing

Dereferencing is simply accessing
the value at the address of a pointer

–

It uses the * symbol again (which
causes confusion)

–

*my_int_pointer -> will get the
integer at the address location

–

Three components to pointers in code

int main(void) {
 // Declare an integer
 int my_age = 23;

 // Declare an integer pointer
 // Assign it the address of my_age
 int *pointer_to_my_age = &my_age;

 // Print out the address and value at the
pointer
 printf("Pointer is: %p value is: %d\n",
pointer_to_my_age, *pointer_to_my_age)
 return 0;
}

Common mistakes

int number;
int *number_ptr;

number_ptr = number;1.
*number_ptr = &number;2.

1- number_ptr is a pointer, we can't
assign it an actual value directly

2- We are assigning the address_of a
variable to a dereferenced pointer (so an
address)

Syntax cheat sheet

Declare a pointer: int
*int_pointer;

–

Address of: &my_variable;–
Dereference (Get the value at a
pointer): *int_pointer;

–

Demo

Goals:

Create a variable
Get the address of that variable
Create a pointer variable

Use it!

But JAKE, why are they USEFUL

Let's look at an example with
pointers and parameters

–

How can we edit a variable within
a function?

Pass by reference*

#include <stdio.h>

void change_value(int *x) {
 *x = *x * 2;
 }

int main(void) {
 int x = 5;
 change_value(&x);
 printf("%d\n", x);

 return 0;
}

Technically pass-reference-by-value but it's fine!–

In the previous example, by passing
the memory address, we can
change the value in place and main
will point to the updated value!

pointers and arrays

!

void double_array_of_ints(int data[], int size)
{
 for (int I = 0; I < size; I++) {
 data[i] = data[i] * 2;
}

int main(void) {
 int data[5] = {1, 2, 3, 4, 5};
 double_array_of_ints(data, 5);
 //is data doubled?
}

^ does data in main contain the doubled values?

How?

Arrays decay to pointers

Arrays point to the memory location
whcih contains the first element

–

As arrays are contiguous, we can
then move through the memory
sequentially to find the next values

–

Very cool!–

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

