
COMP1511
Static arrays
Week 3 Lecture 2

functions/procedures recap

Reusable blocks of code–
Callable multiple times–
variables within a function are
scoped to that function

–

Reusable blocks of code that either do
something, or calculate/return
something

–

Any variables declared within the
function (including parameters) are
destroyed when the function ends

–

PI function

Would be annoying to write this every time
we need to calculate!

double pi() {
 double sum = 0.0;
 for (int i = 0; i < 1000; i++) {
 sum += (-1.0) * pow(1.0 / 2.0, i) /
(i + 1);
 }
 return 4.0 * sum;
}

Forward declaration

int main(void) {
 double calculated_pi = pi();
}

double pi() {
 double sum = 0.0;
 for (int i = 0; i < 1000; i++) {
 sum += (-1.0) * pow(1.0 / 2.0, i) / (i +
1);
 }
 return 4.0 * sum;
}

^ problem! main doesn't know that pi exists yet!

Forward declaration

double pi();

int main(void) {
 double calculated_pi = pi();
}

double pi() {
 double sum = 0.0;
 for (int i = 0; i < 1000; i++) {
 sum += (-1.0) * pow(1.0 / 2.0, i) / (i + 1);
 }
 return 4.0 * sum;
}

^ Solved! We forward declared pi!

Quick functions recap demo

Arrays

So far, we can store a single item
in each variable

What if you wanted to store many
values?

Number of ice creams eaten

int day_1 = 2;
int day_2 = 3;
int day_3 = 3;
int day_4 = 5;
int day_5 = 7;
int day_6 = 1;
int day_7 = 3;
// Any day with 3 or more scoops is too much!
if (day_1 >= 3){
 printf("Too much ice cream\n");
}
if (day_2 >= 3) {...

Seem repetitive?

Remember, if anything seems repetitive,
there is often a cleaner solution

Many variables would clutter the
program

–

Many variables would not always
be efficient

–

Think if we need to store 1,000 students
in COMP1511 course, do we want a
variable for each student?

The memory allocations would be
scattered around the RAM

Data structures

Are common structures (not structs)
used to store multiples of data

–

Usually (especially in COMP1511)
of the same data type

–

Can scale, easily storing a handful,
up to thousands, or more elements of
data!

–

Data structures in COMP1511

We will look primarily at two data
structures:

arrays (today)–

linked lists (future)

These are very, very powerful data
structures you will use forever

–

Arrays

A collection of data, all of the same
type. (homogonous)

–

We have a single identifier for the
entire array

–

It is a random access data
structure, meaning we can access
any element in the array at any time

–

Arrays

We can ready or modify individual
elements

–

It is a contiguous data structure–

contigu-what?
Let's visualise arrays

See whiteboard for visualisation

Our C file is stored on the hard drive–
Our Compiler compiles the code into another file that the
computer can read

–

When we execute code, the CPU will actually process the
instructions and perform basic arithmetic, but the RAM will
keep track of all the data needed in those instructions and
operations, such as our variables.

–

Reading and writing to variables will change the numbers in
RAM

–

Memory is divided into the stack and the heap

The stack is an ordered stack and the heap is a random free
for all - insert something where you can find space for it.

–

Static arrays have a set size

(which you specify)

int array

This int array will store 5 integers–
32bit * 5 elements = 160 bits of memory
used

–

The array declaration syntax
int ice_cream_per_day[7];

Asks the operating system for a piece of
memory big enough to store 7 integers.
Note that there are 7 elements, but
index only goes up to 6!

Declare + initialise

int ice_cream_per_day[7] = {3, 2,
1, 2, 1, 3, 5};

^ Note you can only do this when
you declare, not later!

int ice_cream_per_day[7] = {};

^ Will initialise all elements to 0

int ice_cream_per_day[7] = {3, 2,
1, 2, 1, 3, 5};

Creates:

Accessing elements

int first_day_ice_creams =
ice_cream_per_day[0];

Will retrieve the int 3

Writing elements

ice_cream_per_day[0] = 5;

Will write to index 0 of
ice_cream_per_day

arrays

!

 loops
The power of arrays

int ice_cream_per_day[7] = {3, 2, 1, 2, 1,
3, 5};

// read each element
ice_cream_per_day[0];
ice_cream_per_day[1];
ice_cream_per_day[2];
ice_cream_per_day[3];
ice_cream_per_day[4];
ice_cream_per_day[5];
ice_cream_per_day[6];

^ Does this look repetitive?

If only we had a way to count :(

Bad

int ice_cream_per_day[7]
= {3, 2, 1, 2, 1, 3, 5};

// read each element
printf("%d\n",
ice_cream_per_day[0]);
printf("%d\n",
ice_cream_per_day[1]);
printf("%d\n",
ice_cream_per_day[2]);
printf("%d\n",
ice_cream_per_day[3]);
printf("%d\n",
ice_cream_per_day[4]);
printf("%d\n",
ice_cream_per_day[5]);
printf("%d\n",
ice_cream_per_day[6]);

Good

int ice_cream_per_day[7]
= {3, 2, 1, 2, 1, 3, 5};

int i = 0;
while (i < 7) {
 printf("%d\n",
ice_cream_per_day[i]);
 i++; // i = i + 1;
}

Demo

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

