
Week 3 Lecture 1
Procedures and functions

Week 2 recap

Nested loops

 col
row 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5

Simply, a while loop within a while loop–
Useful for 2-dimensional data (like grids)–

#include <stdio.h>

#define ROWS 5
#define COLUMNS 5

int main() {
 int i = 0;

 while (i < ROWS) {
 int j = 1;
 while (j <= COLUMNS) {
 printf("%d ", j);
 j++;
 }
 printf("\n");
 i++;
 }

 return 0;
}

structs

struct pokemon {
 int hp;
 double weight
};

A defined structure of data
types, each accessible

–

Memory is set aside for each
field in each struct

–

Useful for assigning a variable
to an organised record of data

–

enums

enum elemental_type { FIRE,
WATER, GRASS, DARK };

A possible set of values–
Useful for creating labels in
your code

–

Week 3 Lecture 1
Procedures and functions

Functions

So far, you have used functions in your
code

–

Examples include printf , scanf ,
main ...

–

What actually are these?–

Functions

Functions are reusable blocks of code–
Functions (may) have:–

input (parameters)–
actions (side effects)–
output (results)–

Functions

We call functions to execute their body,
providing any input necessary

–

We can access the result of the function–
We can call a function from anywhere in
our programs

–

Function definition example

int add(int x, int y) {
 return x + y;
}

int ... -> return type (what type should the result be–

add -> the name of the function–

(int x, int y) -> the parameters, what sequence and type
of input must be passed in?

–

return -> evaluate the expression and return the result–

Function call syntax

add(2, 5);

After we define functions, we want to use them–
The () after the name of the function means call–

We must pass in the correct sequence of
arguments of the correct type (int add required
two integers).

–

Function calling

We can pass in variables too

// A simple function which accepts two integers (x, y),
// and returns the result (int) of adding them.
int add(int x, int y) {
 return x + y;
}

int main(void) {
 int year_born = 1994;
 int age = 29;

 add(year_born, age);
}

Retrieving the result of a function

// A simple function which accepts two integers (x, y),
// and returns the result (int) of adding them.
int add(int x, int y) {
 return x + y;
}

int main(void) {
 int year_born = 1994;
 int age = 29;

 int current_year = add(year_born, age);
}

DEMO

Functions terminology

return type -> the type of data returned by the function–
result -> the actual value returned from a function call–
parameters -> the type, and sequence of data to be passed
into a function (the placeholders)

–

argument -> the actual value passed into a function's
parameters when called

–

return -> the keyword used to end a function and return the
result following

–

Procedures
not a real thing in C, but a useful way to

think about some types and roles of
functions

Procedures

Not all functions have to return a result–
We call these void functions, or procedures–
Procedures do something, but don't have a
result

–

procedures (usually) have a side-effect–

procedures

shut_door

side effect?

result?

functions

check_door_shut

side effect?

result?

procedure syntax

void check_door_shut() {

}

This is a function which returns nothing
(void)

–

We could call this a procedure–

Order matters

Functions/procedures have to be defined before
they care called

we can get around this with function prototypes–
Place int add(int x, int y); at the top
of your file to define the int add function for later
use

–

When writing functions in your program, think:

What must I give this function so it can do its job?–
What should it be named?–
What should it return back to me to achieve its
goal? (If anything).

–

Am I re-writing code that could be turned into a
reusable function?

–

Functions are very important

They change how we think about code–
When you come across useful, repeatable
functionality - make it a function

–

0, 1, ∞

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

