
COMP1511 Week 2
Lecture 1
Control Flow

Quick notices

Help sessions starting
early! Keep an eye on
course page

–

Keep the feedback
coming!

–

Feedback overview

We like the lecture format,
quality and in-person
lectures

–

We, on average, seem to
like the pace

–

We would like to see the
slides up earlier

–

Less typos!–

Last week

Went to tute/lab
hello_world.c
memory
reading/writing to

terminal
arithmetic

This week

control flow
logical operators
repetition

Input/Output recap

printf()

Outputs text to terminal–
stands for print
formatted

–

Need to import
#include <stdio.h>
to use

–

What will this print out?

int course_code = 1511;
printf("Welcome to
COMP%d\n", course_code);

printf Usage with
variables

int course_code = 1511;
printf("Welcome to
COMP%d\n", course_code);

prints:

Welcome to COMP1511
jrenzella:~$

newlines

printf("Hello
world!")

Hello
world!jrenzel
la:~$

\n

printf("Hello
world!\n")

Hello world!
jrenzella:~$

scanf()

reads text from terminal
(input)

–

stands for scan
formatted

–

Need to import
#include <stdio.h>
to use

–

scanf usage

int age;
printf("Enter your age: ");
scanf("%d", &age);

^ reads an integer from the terminal
and stores it in age .

%d tells scanf to look for a
decimal integer .

–

We need to use & before the
variable, more on that in a few
weeks...

–

Week 2 Lecture 1
Control Flow

Control Flow

Sometimes we need to
make decisions in our
programs

–

We can make our
programs branch between
sets of instructions

–

To do this, we use the if
statement.

–

Enter the if statement

if

Determines the result of
a boolean (true/false)
question

–

if true, do something–
eg: if an int x is even, do
something...

–

Understanding true and false
in C

true and false are integers in
C

true -> 1–

false -> 0–

later versions of C added
true and false as
synonyms (need to #include
<stdbool.h> to use these)

–

if statement syntax

if(<condition>) {
 do_something();
 do_something_else();
}

if statement -> requires a
condition, executes if true

–

<condition> -> something
that evaluates to true/false

–

{...} -> everything inside will
run if condition is true

–

if statement example

if(1) {
 printf("The
condition was true!\n");
}

^ Will this print anything?

true and false are
keywords in C

–

if statement example 2

if(false) {
 printf("The
condition was
false!\n");
}

^ Will this print anything?

if statement example 3

int x = 5;
if(x >= 0) {
 printf("x is a
positive number!\n");
}

^ Will this print anything?

Wait what is >= ?

Boolean operators

All evaluate to either true (1)
or false (0)

< less than–

> greater than–

<= less than or equal to–

>= greater than or equal to–

== is equal to–

!= not equal to–

Be careful! == and =
are not the same thing!

Questions for the
audience

4 < 21.
4 > 22.
4 <= 43.
5 >= 44.
3 == 35.
'A' != 'B'6.

Demo

More control flow

The else statement

Sometimes we want to run
a block of code if the if
statement is false!

–

the else statement must
be associated with an if
statement.

–

it only runs if the condition
evaluates to false

–

else statement syntax

if(<condition>) {
 do_something();
 do_something_else();
} else {
 do_if_false();
}

Notice there is no condition,
because one is not needed

–

else is optional–

else statement
example

int x = -5;
if(x > 0) {
 printf("x is
positive\n");
} else {
 printf("x is
negative\n");
}

chaining if statements

We can chain multiple if
statements to check for
multiple options

if(<condition>) {
 do_something();
 do_something_else();
} if (<second_condition>) {

do_if_second_condition();
}

What if we want to
check if two things are

true?

Boolean operators

&& -> and operator–

|| -> or operator–

! -> not operator–

putting it all together

int age = 15;
int drinking_age = 18;

if(age > 0 && age < 18) {
 // age is valid, but
not legal
} else if (age > 18) {
 // legal age
} else {
 // invalid age!
}

Live coding

Repetition
Repetition
Repetition
Repetition

Why do we need to loop?

Programmers are lazy, we
don't like repeating
ourselves...

We can make computers do
that for us!

What are some real world
examples?

Enter the while
statement

Repetitive tasks shouldn't
require repetitive code

–

C starts at main and
executes each line in
sequence

–

We can control that
sequence

–

There are three categories of
while loops:

This is the general while loop
syntax:

while (<expression>) { //while the
expression is true
 //do something over and over
} // when the block ends, jump back to
the the start of the while loop

look familiar?

counting loops–
conditional loops–
sentinel loops–

counting loops

int number_of_lines = 5;
int i = 0;

while (I < number_of_lines)
{
 printf("hey!\n");
 i = i + 1;
}

do something n amount of
times (counting up to n)

–

conditional loops

Example: loop until number > 100

int dumbel_kg = 5;
int max_kg_to_lift = 100;
int amount_lifted = 0;

while (amount_lifted < 100) {
 printf("Keep lifting jake!\n");
 amount_lifted = amount_lifted +
dumbel_kg;
}

do something until the condition is true–
we don't know how many times we will
need to loop

–

sentinel loops

Example: loop until number > 100

int dumbel_kg = 5;
int max_kg_to_lift = 100;
int amount_lifted = 0;
int finished_lifting = 0;

while (!finished_lifting) {
 printf("Keep lifting jake!\n");
 amount_lifted = amount_lifted + dumbel_kg;

 if (amount_lifted > 100) {
 finished_lifting = 1;
 }
}

similar to conditional loops–
we manually flag when we want to stop looping
using the sentinel variable

–

DEMO

Feedback

