COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 12

Insert anywhere in the linked list
Time to delete from a linked list

LAST TIME...

e Multifile projects
e Linked Lists -
o creating a list
o inserting nodes at the head

o traversing a list

o inserting nodes at the tail

e Linked Lists -
o inserting anywhere in a linked list

o deleting nodes in a list

m 3t the heac
= 3t the tail

= in the middle

>
<
-
O
-

= With only one item in a list

WHERE IS THE CODE?

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/25T1/CODE/WEEK_7

SQ e The only way we can make our way throug

ist is like a scavenger hunt, we have to fol

N the linked

ow the

TMVE RSI NG inks from node to node (sequentially! we can't skip

nodes)

A I- I N KE D e We have to know where to start, so we need to know

LIST. oo the head of the list

come to the end of the list.

e When we reach the NULL pointer, it means we have

LI N KE D e You should always consider and make sure your

solution works:
LISTS o Inserting into an empty list

o |nserting at the head of the list

o [nserting after the first node if there is only one

INSERTING node

O LN

e Draw a diagram!!!l It will allow you to easily see what

are some potential pitfalls

L I N KE D e Let's consider an easy case to insert in the middle,

find the size of the list and then divide that by 2 to

L I STS find the middle...

INSERT IN

THE MIDDLE

L I N KE D e Move through the list to get to the second node
LISTS ; i:\gug’;uzggi :Cl{:rent = head;

INSERT IN

head = 0xB62

0x666

THE MIDDLE

urrent

LI N KE D * Move through the list to get to the second node

1 while (counter !'= size linked 1list/2) {

LISTS 2 current = current->next;
N

NULL

INSERT IN
THE MIDDLE

head = 0xB62

current

I-I N KE D e Make a new node to insert

1 struct node *new_node = malloc(sizeof(struct node));

LISTS 2 new_node->data = 13 //Example data!
3 new_node->next = NULL;

INSERT IN
THE MIDDLE

0x666 —

current

0xB62 OxA44 OxAAA

LI N KE D e Connect the node in between the two nodes

1 new_node->next = current->next;

LISTS 2 current->next = new_node;

AAA
head = 0xB62 Ox

OxBBB

INSERT IN

THE MIDDLE

OxXFFO
current

0xB62 OxA44 OxAAA

L ET'S e Great!
e Let't think of some conditions that may break this ...
INSERT

o What happens if it is an empty list?

I N TH E o What happens if there is only one item in the list?

MIDDLE?

e How can we safeguard?

L ET'S e What about inserting in order into an ordered list?
Let's try that as a problem and then walk through the

INSE RT code...
AFTE R A e 50 for example, | have a list with 1, 3, 5 and | wanted

to insert a 4 into this list - it would go after 3 ...

PARTICULAR . Lets try it

NODE?

LI N KE D e |n all instances, we follow a similar structure of what

to do when inserting a node. Please draw a diagram
L I STS for yourself to really understand what you are

inserting and the logic of inserting in a particular way.

e Toinsert a node in a linked list:

I N S E RTI N G o Find where you want to insert the node (stop at
A N o D E the node after which you want to insert,

o Malloc a new node for yourself

o Point the new_node->next to the current->next

o Change the current->next to point to the new
node

o Consider possible edge cases, empty list, inserting
at the head with only one item, etc etc.

BREAK TIME...

Can you determine how many times do the minute and

hour hands of a clock overlap in a day?

L I N KE D e Where can | delete in a linked list?

o Nowhere (if it is an empty list - edge case!)
LISTS o At the head (deleting the head of the list)
o Between any two nodes that exist

o At the tail (last node of the list)

DELETING

LI N KE D e Deleting when nowhere! (it is an empty list)
LISTS s - e ML

struct node *current = head;
DELETING R

EMPTY LIST }

LI N KE D e Deleting when there is only one item in the list
LISTS

head = 0xB62

DELETING

ONE ITEM

NULL

LI N KE D e Deleting when there is only one item in the list
o free the head!
LISTS

R

DELETING X

frawm

I NULL NULL

O0xB62

ONE ITEM

LI N KE D e Deleting when at the head of the list with other items

RUERISS
L I STS o Find the node that you want to delete (the head)

struct node *current = head

head = 0xB62

DELETING

THE HEAD
WITH OTHER
ITEMS

current->next

L I N KE D e Deleting when at the head of the list with other items

in the list

LISTS o Point the head to the next node

struct node *new _head = current->next;

DELETING

THE HEAD
WITH OTHER
ITEMS

0xX666
current

LI N KE D e Deleting when at the head of the list with other items

in the list

L I STS o Delete the current head

free(current);

DELETING
THE HEAD

WI T H OT H E R current current->next

ITEMS (\/
AN

OxB62 O0xA44 OxXFFO

:]

L I N KE D e Deleting when in the middle of two nodes (for
LISTS

example, node with 3)
o Set the head to a variable current to keep track

of the loop

DELETING et mode tevrrent = hon
IN MIDDLE

OF TWO —
NODES

current->next T

LI N KE D e Deleting when in the middle of two nodes (for
example, node with 3)
LISTS

o Loop until you find the right node - what do we
think loop until the node with 3 or the previous
node? Remember that once you are on the node

DE L ETI NG th 3, you have no idea what previous node was.

IN MIDDLE _
head OxB62
OF Two current current->next T

NODES

LI N KE D e Deleting when in the middle of two nodes (for
LISTS

example, node with 3)

o So stop at a previous node (when the next is = 3)

while (current->next->data !'= 3){
current = current->next;
DELETING)
IN MIDDLE pesa - oz
head = 0xB62

OF TWO
NODES

current current->next

L I N KE D e Deleting when in the middle of two nodes (for
example, node with 3)
LISTS

o Create new next node to store address

struct node *new next = current->next->next;

DELETING

IN MIDDLE pesa = omer
head = 0xB62

OF TWO — current->next™_ new_nex
NODES s)

i

LI N KE D e Deleting when in the middle of two nodes (for
example, node with 3)
LISTS

o Delete current->next

free(current->next);

DELETING

IN MIDDLE
OF TWO current
NODES

LI N KE D e Deleting when in the middle of two nodes (for
example, node with 3)
LISTS

o Set the new current->next to the new_next node

current->next = new_next;

DELETING

IN MIDDLE hosd = oxmez
head = 0xB62
OF Two current current-Inext

NODES

LI N KE D e Deleting when in the tail

o Set the current pointer to the head of the list
LISTS

struct node *current = head

DELETING

NULL
THE TAIL
current current->next current—>nexT—

>ne

.

LINKED
LISTS

DELETING

THE TAIL

e Deleting when in the tail
o Find the tail of the list (should | stop on the tail or
pefore the tail?]

o If the next is NULL than | am at the tail...
while (current->next->next !'= NULL){
current = current->next;

NULL

current-:[;xt

.

current

OxB62 O0xA44 OxXFFO

LI N KE D e Deleting when in the tail
o Delete the current->next node
LISTS

free(current->next);

DELETING

NULL

THE TAIL

current current- >Text

LI N KE D e Deleting when in the tail

o Point my current->next node to a NULL

LISTS current->next = NULL;

DELETING

NULL

THE TAIL

current

LI N KE D e |n all instances, we follow a similar structure of what

to do when deleting a node. Please draw a diagram for

L I STS yourself to really understand what you are deleting
and the logic of deleting in a particular way.

e To delete a node in a linked list:

DE L ETI NG o Find the previous node to the one that is being
A NODE deleted

o Change the next of the previous node
o Free the node that is to be deleted

o Consider possible edge cases, deleting if there is

nothing in the list, deleting when there is only one
item in the list, deleting the head of the list,
deleting the tail of the list, etc.

LINKED
LISTS

DELETING
A NODE

1
2
3
4
5
6
5
8

2
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Sl
Ei
33
34
55
36
£}/
38
39 }

struct node *delete_node (struct node *head, int data) {

// Create a current pointer set to the head of the list

struct node *current = head;

// Sometimes 1t is helpful to keep track of a previous node

// to the current as that means you won't lose it....

struct node *previous = NULL; // If the current node is at head, that
// means the previous node is at NULL

// What happens if we have an empty list?
if (current == NULL) {
return NULL;
} else if (current->data == data) {
// What happens if we need to delete the item that is
// the head of the list?
struct node *new_head = current->next;
free(current);
return new_head;
// This will return whatever was after current as the
// new head. If there is only one node in the list and
// 1t is the one to be deleted, i1t will capture this (NULL)

}

// Otherwise start looping through the list to find the data
// 1. Find the previous node to the one you want to delete
while (previous->next->data != data && current->next != NULL) {
previous = current;
current = current->next;

}

// 2. If the current node is the one to be deleted
if (previous->next->data == data) {
//point the next node to the new pointer
previous->next = current_next;
// 3. free the node to be deleted
free(current);

}

return head;

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

WHAT DID WE LEARN TODAY?

LINKED LISTS LINKED LISTS
- INSERT - DELETING
ANYWHERE

linked_list.c

linked_list.c

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

