COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 11

Multi-file projects (finally]

Linked Lists - What is happening?
What is it? Inserting at the head, traversing it,
inserting at the tail

LAST TIME...

e Poi
e Ma

nters

loc and free

e Multi-file projects (finally)

e Malloc and free rehash :)

e | inked Lists - what is it?

e | inked list - insert at the head

e | inked list - traversal

>
<
-
O
-

e Linked list - insert at the tail (if

time?

WHERE IS THE CODE?

Live lecture code can be found here:

HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/25T1/CODE/WEEK_7

= e Big programs are often spread out over multiple
MULTI-FILE
PROJ ECTS files. There are a number of benefits to this:

o Improves readability (reduces length of

program)
WHAT ARE o You can separate code by subject (modularity)
TH EY? o Modules can be written and tested separately
®

e So far we have already been using the multi-file
capability. Every time we #include, we are actually
borrowing code from other files

e We have been only including C standard libraries

MU LTI = FI I.E e You can also #include your own! (FUN!)
PROJECTS e This allows us to join projects together

e |t also allows multiple people to work together on

projects out in the real world

WHAT ARE o We will also often produce code that we can then

TH EY? use again in other projects (that is all that the C
° standard libraries are - functions that are useful in

multiple instances)

- e In a multi file project we might have:
MULTI-FILE
PROJECTS o (multiple) header file - this is the .h file that you

nave been using from standard libraries already

o (multiple) implementation file - this is a .c file, it

o H AN D ,C implements what is in the header file.

e Each header file that you write, will have its own

implementation file
/\ e a main.c file - this is the entry to our program, we
header

. try and have as little code here as possible
file impleme

#include " .h" nt(]tiOn
file

MULTI-FILE
PROJECTS

.H
HEADER FILE

header
file

#include " .h"

e Typically contains:

o function prototypes for the functions that will

be implemented in the implementation file

o comments that describe how the functions will

be used

o #defines

o the file basically SHOWS the programmer all

they neec

o NO RUNN

to know to use the code
NG CODE

o This is like a definition file

MU LTI - FI LE This is where you implement the functions that you have
PROJECTS defined in your header file

.C
IMPLEMENTATION

implementation
file

.C

MU LTI = FI I_E This is where you call functions from that may exist in
PROJECTS other modules.

MAIN.C

MU LTI - FI LE e We will have .three files:
PROJECTS > header file - maths.h

o implementation file - maths.c
= #include "maths.h”

AN EXAMPLE o main file - main.c

s #include "maths.h”

MULTI-FILE

1 // This 1s the header file for the maths module
PROJECTS 2 // example. The header file will contain:

3 // - any #defines
// - function prototypes and any comments

AN EXAMPLE vietine PT 3.14
HEADER FILE ,

// Function prototype for a function that
// calculate the square of a number:
0 int square(int number);

|7 // Function prototype that calculates the sum of
13 // of two numbers
14 int sum(int number_one, int number_two);\

MULTI-FILE
PROJECTS 1 // Thié is the implementation file of maths.h

2 // We defined two functions in the header file (.h)

3 // and this 1i1s where we actually implement them

:f // Include your header file in the implementation file
AN EXAMPLE // by using the below syntax:
IMPLEMENTATION

#include "maths.h"

FILE (NOTE TO
INCLUDE THE
HEADER THAT WE [N

DEFINED! 14 int sum(int number_one, int number_two) {

10 int square(int number) {
11 return number * number;

return number_one + number_two;

MULTI-FILE
PROJECTS

AN EXAMPLE OF
MAIN THAT
DRIVES OUR
PROGRAM

// This 1s the main file in our program.

// This 1s where we drive the program from

// and where we make calls to our modules. We
// need to inclide the header file for each
// module that we want to use functions from.

#include <stdio.h>
// Include our header file also
#include "maths.h"

int main(void) {
int number_one = 13;
int number_two = 10;

printf("The square of the number %d is %d\n",
number_one, square(number_one));
printf("The sum of %d and %d is %d\n",

number_one, number_two, sum(number_one, number_two));
return 0;

MU LTI = FI I_E To compile a multi file, you basically list any .c files you
PROJECTS have in your project (in the case of our example, we have

a maths.c and a main.c file):

COMPILING

= Terminal

File Edit View Terminal Tabs Help

:~/maths module$ dcc maths.c main.c -o maths
:~/maths module$./maths

The square of the number 13 1s 169

The sum of 13 and 10 1s 23

| :~/maths module$

The program will always enter in main.c, so there should

only be one main.c when compiling

RE HAS H e Allocate some memory by calling the

function malloe() and letting this function know

how many bytes of memory we want

MALLOC() o this is the stuff that goes on the heap!

o this function returns a pointer to the piece of
memory we created based on the number of bytes
we specified as the input to this function

o this also allows us to dynamically create memory

as we need it - neat!
o This means that we are now in control of this

memory (cue the evil laugh!)

It would be very impolite to keep requesting memory to be

REHASH

made (and hog all that memory!), without giving some

back...

FREE() e This piece of memory is ours to control and it is
important to remember to kill it or you will eat up all
the memory you computer has... slow down the
machine, and often result in crashing... often called a
memory leak...

e A memory leak occurs when you have dynamically
allocated memory (withmalloc()) that you do not
free - as a result, memory is lost and can never be
free causing a memory leak

e You can free memory that you have created by using

the function £free()

HOW DO |
KNOW HOW
MUCH
MEMORY TO

ASK FOR
WHEN | USE
MALLOC()

SIZEOF()

e We can use the function sizeof()to give us the

exact number of bytes we need to malloc (memory

allocate)

1 // This program demonstrates how sizeof() function works

2 // It returns the size of a particular data type

3 // We use the format specified %lu with i1t (long unsigned)
4 // i1f we want to print out the output of sizeof()

5
6 #include <stdio.h>
’
8 int main (void) {
9
10 int array[10] = {0};
11
12 // Example of using the sizeof() function
13 printf(“The size of an int is %lu bytes\n", sizeof(int));
14 printf("“The size of an array of int is %lu bytes\n", sizeof(array));
15 printf(“"The size of a 10 ints is %lu bytes\n", 10 * sizeof(int));
16 printf("“The size of a double is %lu bytes\n", sizeof(double));
17 printf("The size of a char is %lu bytes\n", sizeof(char));
19 return 0;
20 }

Fo RMAT e Using the malloc() function:

if you need to have space for
more than one element, you

MALLOC() multiply it by the number of

elements you need

1 int *ptr = malloc(x * sizeof(int));

/ N

the pointer that using the

malloc will return function

\

to indicate the specify data

start of the

portion of space it

type that

yYou need
has allocated

Fo RMAT e Using the malloc() function example

1 int *ptr

malloc(1l0 * sizeof(int));

MALLOC()

heap This will create a piece
of memory of 10 ™ 4
bytes = 40 bytes and
return the address of
where this memory is

in ptr

ST RU CTS e Remember that when we access members of a struct

We use a.

AN D 1 #include <stdio.h>

2 #1nclude <string.h>
3

POINTERS —

6 // 1. Define struct
7 struct dog {

8 char name[MAX];
9 int age;
10 };
11
'> VERSUS ° 12 int main (void) {
13 // 2. Declare struct
14 struct dog jax;
115;
16 // 3. Initialise struct (access memebers with .)
17 // Remember we can't just do jax.name = "Jax"
18 // So can use the function strcpy() in <string.h>
19 // to copy the string over
20
21 strcpy(jax.name, "Jax");
22 jax.age = 6;
23
24 printf("%ss i1s an awesome dog, who 1s %d years old\n", jax.name, jax.age);
25 return 0;

26 }

STRUCTS
AND
POINTERS

-> VERSUS .

e What happens if we make a pointer of type struct?

How do we access it then?

1 #include <stdio.h>
2 #include <string.h>

5

4 #define MAX 15

5

6 // 1. Define struct

y
8
9

10

11

117

s

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

struct dog {

char name[MAX];
int age;
};
int main (void) {
// 2. Declare struct
struct dog jax;
// Have a pointer to the variable jax of type struct dog
struct dog *jax_ptr = &jax;
// How would we initialise it using the pointer?
// Perhaps dereference the pointer and access the member?
strcpy((*jax_ptr).name, "Jax");
(*jax_ptr).age = 6;
printf("%s i1s an awesome dog, who is %d years old\n", (*jax_ptr).name, (*jax_ptr).age);
return 0;
Is

ST RU CTS e Those brackets can get quite confusing, so there is a

shorthand way to do this with an ->
AN D e There is no need to use (*jax_ptr) and instead can just

POI NTE RS straight jax_ptr ->

// INSTEAD OF THIS:

//strcpy((*jax_ptr).name, "Jax");

//(*jax_ptr).age = 6;

//printf("%ss is an awesome dog, who 1s %d years old\n", (*jax_ptr).name, (*jax_ptr).age);
// DO THIS:

strcpy(jax_ptr->name, "Jax");

jax_ptr->age = 6;

-> VERSUS .

printf("%s is an awesome dog, who is %d years old\n", jax_ptr->name, jax_ptr->age);

o OV NOULES WN =

WHY ARE e Now that you have become comfortable with arrays,

we are going to become acquainted with another
YOU important data structure (drum roll please ©):

HURTING US
WITH ALL e The one and only LINKED LIST @&

THIS STUFF?

WE HAVE COME TO
THE ULTIMATE
REVEAL.

A L I N KE D e Linked lists are dynamically sized, that means we can

grow and shrink them as needed - efficient for

L I ST memory!

e Elements of a linked list (called nodes) do NOT need to
be stored contiguously in memory, like an array.

WHY? e We can add or remove nodes as needed anywhere in
the list, without worrying about size (unless we run
out of memory of course!)

e We can change the order in a linked list, by just
changing where the next pointer is pointing to!

e Unlike arrays, linked lists are not random access data
structures! You can only access items sequentially,

starting from the beginning of the list.

A L I N KE D e Web browsers (think back buttons)

e Music Players (playlists)

LIST e Can you think of some more?

WHERE IS IT USED?

e Each node has some data and a pointer to the next
A L I N KE D node (of the same data type), creating a linked
L I ST IS structure that forms the list

e Let me propose a node structure like this:
MADE U P OF struct node {

NODES e
struct node *next;

WHAT IS A NODE?

some data of type int

a pointer to the next node,
which also has some data
and a pointer to the node
after that... etc

A LINKED
LIST IS
MADE UP OF
MANY

NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

e We can create a linked list, by having many nodes
together, with each struct node next pointer giving us
the address of the node that follows it

node node node

struct
node
*next;

e But how do | know where the linked list starts?

A L I N KE D e What about a pointer to the first node?

node node node

LIST IS
MADE UP OF
MANY

NODES

A pointer to the
A - first node (not a
ointer]
P node 1itself, but has

THE NODES ARE to the the memory address
LINKED TOGETHER (A Ektiddtad of where the first
SCAVENGER HUNT node is!

OF POINTERS)

e How do | know when my list is finished?

A LINKED Pointing to a NULL at the end!

node node il

LIST IS
MADE UP OF
MANY

NODES

NULL
A pointer

THE NODES ARE to the
LINKED TOGETHER (A [Eiidiitl
SCAVENGER HUNT

OF POINTERS)

e For example, a list with: 1, 3, 5
flé-'erl gE D node node node

MADE UP OF

MANY

NODES

head = OxFFO

LINKED TOGETHER (A 0x666
SCAVENGER HUNT
OF POINTERS)

THE NODES ARE

NULL

A L I N KE D e |n order to create a linked list, we would need to

o Define struct for a node,
L I ST o A pointer to keep track of where the start of the
list is and

o A way to create a node and then connect it into

HOW DO WE CREATE our list...
ONE AND INSERT

INTO IT?

A L I N KE D e Let's say we wanted to create a linked list with 5, 3, 1
o Let's create the first node to start the list!

L I ST o A pointer to keep track of where the start of the

list is and by default the first node of the list

o |t will point to NULL as there are no other nodes

HOW DO WE CREATE in this list.
ONE AND INSERT

INTO IT?

node
'IIIIIIIII

NULL

head = OxFFO

0x666 OxXFFO

A L I N KE D o Create the next node to store 3 into (you need

memory

LIST e Assign 3 to data

e and insert it at the beginning so the head would now

point to it and the new node would point to the old

HOW DO WE CREATE head
ONE AND INSERT

head = 0xA44

0x666

INTO IT?

NULL

O0xA44 OxXFFO

A L I N KE D o Create the next node to store 5 into (you need

memory

LIST e Assign 5 to data

e and insert it at the beginning so the head would now

point to it and the new node would point to the old

HOW DO WE CREATE head _
ONE AND INSERT NULL

0x666
node T

INTO IT?

OxB62 OxXFFO O0xA44

BREAK TIME...

You have five boxes in a row numbered 1to 5, in one of
which, a cat is hiding. Every night he jumps to an adjacent
box, and every morning you have one chance to open a box
to find him. How do you win this game of hide and seek -

what is your strategy? What if there are n boxes?

1.Define our struct for a node

A L I N KE D 2. A pointer to keep track of where the start of the list
LIST

o The pointer would be of type struct node, because

it is pointing to the first node

PUTTING IT ALL o The first node of the list is often called the 'head’
TOGETHER IN CODE of the list (last element is often called the 'tail’)
3.A way to create a node and then connect it into our
list...

o Create a node by first creating some space for
that node (malloc)
o |nitialise the data component on the node

o |nitialise where the node is pointing to

4. Make sure last node is pointing to NULL

A LINKED o For example a list with 1, 3, 5
LIST IS
MADE UP OF

VIAN Y

0x666

NODES

THE NODES ARE
LINKED TOGETHER (A
SCAVENGER HUNT
OF POINTERS)

How CAN e How do you think we can move through the list to

start a the head and then move to each subsequent

WE MOVE node until we get to the end of the list...
THROUGH

THIS LIST

head = 0xB62

0x666

TO FIND
NEXT
NODE?

H ow CAN Set your head pointer to the current pointer to keep track
WE MOVE of where you are currently located....

THROUGH struct node *current = head

THIS LIST

TO FIND
NEXT
NODE?

HOW CAN

Now how would we move the current along?

WE MOVE rrrrrr t = curren t->next
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

HOW CAN

Now how would we move the current along?

WE MOVE rrrrrr t = curren t->next
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

H ow CAN Now how would we move the current along?
WE MOVE current = current->next
When should | be stopping?
TH ROUGH while (current != NULL)
THIS LIST

0x666

current

TO FIND
NEXT
NODE?

SQ e The only way we can make our way throug

ist is like a scavenger hunt, we have to fol

N the linked

ow the

TMVE RSI NG inks from node to node (sequentially! we can't skip

nodes)

A I- I N KE D e We have to know where to start, so we need to know

LIST. oo the head of the list

come to the end of the list.

e When we reach the NULL pointer, it means we have

SO NOW,
LET'S PRINT
EACH NODE
OUT...

void print list(struct node *head)({
struct node *current = head;

while (current !'= NULL){
printf (" ", current->data);
current = current->next;

H

INS E RTI NG e Where can | insert in a linked list?

o At the head (what we just did!)

ANYWH E RE o Between any two nodes that exist (next lecture!)
o After the tail as the last node (now!)
IN A LINKED

head = 0xB62

0x666

LIST...

H ow CAN Set your head pointer to the current pointer to keep track
WE MOVE of where you are currently located....

THROUGH struct node *current = head

THIS LIST

TO FIND
NEXT
NODE?

HOW CAN

Now how would we move the current along?

WE MOVE rrrrrr t = curren t->next
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

HOW CAN

Now how would we move the current along?

WE MOVE rrrrrr t = curren t->next
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

H ow CAN Now how would we move the current along?
WE MOVE current = current->next
When should | be stopping?
TH ROUGH while (current != NULL)
THIS LIST

0x666

current

TO FIND
NEXT
NODE?

Now how would we move the current along?

current = current->next
How CAN When should | be stopping? If you stop at current = NULL
WE MOVE that means you won't know what the address of the
THROUGH Pile (eurrent 1= NULD)

THIS LIST

current

head = 0xB62

0x666

TO FIND
NEXT
NODE?

H ow CAN Now how would we move the current along?
WE MOVE current = current->next

So let's stop at the last node...

TH ROUGH while (current->next != NULL)
THIS LIST

head = 0xB62

NULL
0x666

currentT

TO FIND
NEXT
NODE?

H ow CAN Now we want to create a new node to insert:
WE MOVE struct node new_node = malloc(sizeof(struct
node))

THROUGH

THIS LIST

head = 0xB62

NULL
0x666

currentT

TO FIND
NEXT
NODE?

H ow CAN Assign values to new node:
WE MOVE new node->data = 13;
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

HOW CAN
WE MOVE
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

Because this will be the last node point it to NULL

new_node->next = NULL;

head = 0xB62

0x666

O0xB62

NULL

current

HOW CAN
WE MOVE
THROUGH
THIS LIST

TO FIND
NEXT
NODE?

Now point our current last node to the new node

current->next = new _node;

head = 0xB62

0x666

NULL

\ current

OxXFFO

Feedback please!

| value your feedback and use to pace the lectures and improve your overall
learning experience. If you have any feedback from today’s lecture, please
follow the link below. Please remember to keep your feedback constructive,

so | can action it and improve the learning experience.

https://forms.office.com/r/SdwfGte8MK

WHAT DID WE LEARN TODAY?

MULTIFILE LINKED LIST LINKED LIST LINKED LIST LINKED LIST

PROJECTS . | |
What is it? Insert at the head Traverse a list Insert at the tail
maths.c linked_list.c linked_list.c linked_list.c linked_list.c
maths.h

main.c

REACH OUT

CONTENT RELATED

QUEST
Check out t

ONS

ne forum

ADMIN QUESTIONS

cs1511@unsw.edu.au

