
COMP1511 PROGRAMMING FUNDAMENTALS

LECTURE 10
Pointers
Memory

LA
ST

 T
IM

E.
..

For those interested, I did find

churros and ate many

TO
D
A
Y
..
.

Multi-file projects

Pointers pointers pointers

Memory and dynamic memory

WHERE IS THE CODE?

Live lecture code can be found here:
HTTPS://CGI.CSE.UNSW.EDU.AU/~CS1511/25T1/CODE/WEEK_5/

POINTERS

👏🏻👏🏻👏🏻

A pointer is another variable that stores a memory

address of a variable

This is very powerful, as it means you can modify

things at the source (this also has certain

implications for functions which we will look at in a

bit)

To declare a pointer, you specify what type the

pointer points to with an asterisk:

For example, if your pointer points to an int:

int *pointer;

type_pointing_to *name_of_ variable;

VISUALLY
WHAT IS
HAPPENING?

// Declare a variable of
// type int. called number
// Assign the value 13 to
// box
int number = 2;

// Declare a pointer
// variable that points to
// an int and assign the
// address of number to it
int *number_ptr = &number;

Memory Stack

0xFF40

0xFF44

0xFF48

0xFF4C

number = 2;

// So now:
number = 13
AND
number_ptr = 0xFF40

POINTERS 1) Declare a pointer with a * - this is where you will

specify what type the pointer points to. For example, a

pointer that stores the address of an int type variable:

2) Initialise a pointer - assign the address to the variable

with &

3) Dereference a pointer - using a * , go to the address

that this pointer variable is assigned and find what is at

that address

int *number_ptr;

*number_ptr

number_ptr = &number;

POINTERS

THERE ARE
THREE PARTS
TO A POINTER

Declare a pointer with
a * - this is where you
will specify what type
the pointer points to

1.

2. Initialise a pointer - assign
the address to the variable

with &

3. Dereference a pointer -Using a * , go to the address that
this pointer variable is assigned and find what is at that

address

CODE CODE
CODE

A SIMPLE POINTERS
EXAMPLE

A simple pointers example

howdy_pointer.c

CODE CODE
CODE

ARRAYS AND POINTERS AND
FUNCTIONS - LET'S BRING IT
ALL TOGETHER...

Let's see and use some pointers. Now remember that

you can only return one thing back to main and you

can't return an array*

The problem is this:

Swap two numbers in a function call

So without using pointers, can you have a swapping

function that swaps out two things? How would you

return both of those things back to the main?
pointer_function.c

REVISITING
MEMORY

heap

stack

global/static
variable

code

REVISITING
MEMORY

stack

High Address

Stack memory is where relevant information about

your program goes:

which functions are called,

what variables you created,

Once your block of code finishes running {}, the

function calls and variables will be removed from

the stack (it's alive!)

It means at compile time we can allocate stack

memory space (not at run time)

The stack is controlled by the program NOT BY THE

developer

REVISITING
MEMORY stack

Start running the main

main()

REVISITING
MEMORY stack

Allocate space for the variable number in main

main()
int number

REVISITING
MEMORY stack

main()

Allocate space for the variable number2 in main, and assign value

5 to it

int number

int number2 = 5

REVISITING
MEMORY stack

main()
int number

Allocate space for the variable number3 in main, and assign value

-1 to it

int number2 = 5

int number3 = -1

REVISITING
MEMORY stack

main()
int number

int number2 = 5

int number3 = -1

int *number_ptr =

Allocate space for the variable number_ptr in main, and assign the

address of number2 to it

REVISITING
MEMORY stack

main()
int number

int number2 = 5

int number3 = -1

int *number_ptr =

Call function sum() (remember we go on the right first and then

assign to the left!) and allocate memory space on the stack

sum()

REVISITING
MEMORY stack

main()
int number

int number2 = 5

int number3 = -1

int *number_ptr =

Allocate space for variable number in the sum function call and

assign the value 10 to it. THen change the value by adding 5 to it

sum()
int number = 10 15

REVISITING
MEMORY stack

main()
int number

int number2 = 5

int number3 = -1

int *number_ptr =

Deallocate the stack memory of sum() and return 15 to the main

function. Allocate space for number and assign 15 to it.

int number4 = 15

REVISITING
MEMORY stack

Deallocate the stack memory for main and return 0 to finish

QUICK
REHASH

MEMORY

So far we have talked a bit about how variables are stored

in memory, and live in their world {} in the stack memory

This means that if we create data inside a function, it

will die when that function finishes running

This is memory that is allocated by the compiler at

compile time...

// Make an array
int *create_array(void) {
 int numbers[10] = {0};
 // Return pointer to the array
 return numbers;
}
//However, when we close the curly brakes,our
//array is killed, so we are returning a
//pointer to memory that we no longer have...

REVISITING
MEMORY
heap

A helper function cannot return a pointer of a stack variable! So

how can be deal with this? You can return by copying it or putting

it into a more permanent storage - yay the heap!

Unlike stack memory, heap memory is allocated by the

programmer and won't be deallocated until it is explicitly freed by

the programmer also! You have a great power now... but with

great power comes great responsibility!

BUT WHAT
HAPPENS IF
I WANT TO
SAVE SOME
MEMORY?

MALLOC()

We do have the wonderful opportunity to allocate

some memory by calling the function and

letting this function know how many bytes of memory

we want

this is the stuff that goes on the heap!

this function returns a pointer to the piece of

memory we created based on the number of bytes

we specified as the input to this function

this also allows us to dynamically create memory

as we need it - neat!

This means that we are now in control of this

memory (cue the evil laugh!)

malloc()

WHAT IF I
RUN WILD
AND JUST
KEEP
ASKING
FOR
MEMORY?

FREE()

It would be very impolite to keep requesting memory to be

made (and hog all that memory!), without giving some

back...

This piece of memory is ours to control and it is

important to remember to kill it or you will eat up all

the memory you computer has... slow down the

machine, and often result in crashing... often called a

memory leak...

A memory leak occurs when you have dynamically

allocated memory (with) that you do not

free - as a result, memory is lost and can never be

free causing a memory leak

You can free memory that you have created by using

the function

malloc()

free()

HOW DO I
KNOW HOW
MUCH
MEMORY TO
ASK FOR
WHEN I USE
MALLOC()

SIZEOF()

We can use the function to give us the

exact number of bytes we need to malloc (memory

allocate)

sizeof()

FORMAT

MALLOC()

Using the function:malloc()

the pointer that

malloc will return

to indicate the

start of the

portion of space it

has allocated

using the

function

if you need to have space for

more than one element, you

multiply it by the number of

elements you need

specify data

type that

you need

FORMAT

MALLOC()

Using the function examplemalloc()

heap This will create a piece

of memory of 10 * 4

bytes = 40 bytes and

return the address of

where this memory is

in ptr

ptr = 0x0000 (40 bytes)

PUTTING IT
ALL
TOGETHER:

MALLOC(SIZEOF())
FREE()

Using all of these together in a simple example:

WHAT ARE
ARRAYS?
DECAY TO POINTERS...

Let’s see how arrays decay to a pointer...

array_decay.c

BR
EA

K
 T

IM
E.

..

Jax and Juno have fallen in love (via the internet) and Jax

wishes to mail her a ring. Unfortunately, they live in the

country of Kleptopia where anything sent through the mail

will be stolen unless it is enclosed in a padlocked box. Jax

and Juno each have plenty of padlocks, but none to which

the other has a key. How can Jax get the ring safely into

Juno’s hands?

STRUCTS
AND
POINTERS

-> VERSUS .

Remember that when we access members of a struct

we use a .

What happens if we make a pointer of type struct?

How do we access it then?STRUCTS
AND
POINTERS

-> VERSUS .

Those brackets can get quite confusing, so there is a

shorthand way to do this with an ->

There is no need to use (*jax_ptr) and instead can just

straight jax_ptr ->

STRUCTS
AND
POINTERS

-> VERSUS .

Now that you have become comfortable with arrays,

we are going to become acquainted with another

important data structure (drum roll please 🥁):

The one and only LINKED LIST 🥳

WHY ARE
YOU
HURTING US
WITH ALL
THIS STUFF?

WE HAVE COME TO
THE ULTIMATE
REVEAL.

MULTI-FILE
PROJECTS

WHAT ARE
THEY?

Big programs are often spread out over multiple

files. There are a number of benefits to this:

Improves readability (reduces length of

program)

You can separate code by subject (modularity)

Modules can be written and tested separately

So far we have already been using the multi-file

capability. Every time we #include, we are actually

borrowing code from other files

We have been only including C standard libraries

MULTI-FILE
PROJECTS

WHAT ARE
THEY?

You can also #include your own! (FUN!)

This allows us to join projects together

It also allows multiple people to work together on

projects out in the real world

We will also often produce code that we can then

use again in other projects (that is all that the C

standard libraries are - functions that are useful in

multiple instances)

MULTI-FILE
PROJECTS

.H AND .C

In a multi file project we might have:

(multiple) header file - this is the .h file that you

have been using from standard libraries already

(multiple) implementation file - this is a .c file, it

implements what is in the header file.

Each header file that you write, will have its own

implementation file

a main.c file - this is the entry to our program, we

try and have as little code here as possible header
file

#include " .h"

impleme
ntation

file
.c

MULTI-FILE
PROJECTS

.H
HEADER FILE

Typically contains:

function prototypes for the functions that will

be implemented in the implementation file

comments that describe how the functions will

be used

 #defines

the file basically SHOWS the programmer all

they need to know to use the code

NO RUNNING CODE

This is like a definition file

header
file

#include " .h"

MULTI-FILE
PROJECTS

.C
IMPLEMENTATION

This is where you implement the functions that you have

defined in your header file

implementation
file

.c

MULTI-FILE
PROJECTS

MAIN.C

This is where you call functions from that may exist in

other modules.

MULTI-FILE
PROJECTS

AN EXAMPLE

We will have three files:

header file - maths.h

implementation file - maths.c

#include "maths.h"

main file - main.c

#include "maths.h"

MULTI-FILE
PROJECTS

AN EXAMPLE
HEADER FILE

MULTI-FILE
PROJECTS

AN EXAMPLE
IMPLEMENTATION
FILE (NOTE TO
INCLUDE THE
HEADER THAT WE
DEFINED!

MULTI-FILE
PROJECTS

AN EXAMPLE OF
MAIN THAT
DRIVES OUR
PROGRAM

MULTI-FILE
PROJECTS

COMPILING

To compile a multi file, you basically list any .c files you

have in your project (in the case of our example, we have

a maths.c and a main.c file):

The program will always enter in main.c, so there should

only be one main.c when compiling

Like an array, a linked list is used to store a collection

of the same data type

So what's the point?

Linked lists are dynamically sized, that means we

can grow and shrink them as needed - efficient

for memory!

Elements of a linked list (called nodes) do NOT

need to be stored contiguously in memory, like an

array.

Unlike arrays, linked lists are not random access

data structures! You can only access items

sequentially, starting from the beginning of the

list.

INTRODUCIN
G A NEW
DATA
STRUCTURE

LINKED LISTS

We hope that you all have a good rest and catch up

over the Flex Week time.

There are no formal classes next week!

Help Sessions are still running, please check the

timetable

Forum will be monitored closely to help you with any

Assignment 1 queries

HAVE A
RESTFUL FLEX
WEEK!

Feedback please!
I value your feedback and use to pace the lectures and improve your overall

learning experience. If you have any feedback from today's lecture, please

follow the link below. Please remember to keep your feedback constructive,

so I can action it and improve the learning experience.

https://forms.office.com/r/SdwfGte8MK

howdy_pointer.c

array_magic.c

pointer_functions.c

pointer_struct.c

POINTERS

sizeof_demo.c

malloc.c

memory_fun.c

MEMORY

WHAT DID WE LEARN TODAY?

RE
A

C
H

 O
U

T

cs1511@unsw.edu.au

ADMIN QUESTIONS

Check out the forum

CONTENT RELATED
QUESTIONS

