
COMP1511/COMP1911

COMP1511 Programming Fundamentals
 

Week 4 Lecture 2

Strings, Arrays of Strings
Command Line Arguments

1



COMP1511/COMP1911

Last Lecture
● Recap Arrays
● Arrays of structs
● 2D Arrays

2



COMP1511/COMP1911

Today’s Lecture
● 2D Arrays recap
● Strings
● Arrays of strings 
● Command Line Arguments 

Note: Anything we don’t finish can be covered in the next lecture.

3



COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_4/

 

Link to Week 4 Live Lecture Code

4

https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_4/


COMP1511/COMP1911

Assignment 1 
● Assignment 1 has been released
● Assignment 1 walkthrough video is out!
● https://www.youtube.com/watch?v=meFfz1rR5bg
● Get started soon!

5

https://www.youtube.com/watch?v=meFfz1rR5bg


COMP1511/COMP1911

Recap: 2D Arrays: Accessing Indexes

6

// A 2D array with 3 rows and 5 columns of int

int number_grid[3][5];

// To access an element you need to give 2 indexes

number_grid[2][3] = 42;

col 0

row 0

col 1 col 2 col 3 col 4

row 1

row 2 42



COMP1511/COMP1911

2D Arrays: Traversal

7

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 0 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

8

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 1 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

9

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 2 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

10

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0 
Inner  loop: col  = 3 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

11

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 0 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

12

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 1 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

13

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 2 

col 3

1

4

5 0 6 3row 2



COMP1511/COMP1911

2D Arrays: Traversal

14

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1 
Inner  loop: col  = 3 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

15

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 0 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

16

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 1 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

17

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 2 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

2D Arrays: Traversal

18

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1}, 

             {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
    int col = 0;
    while (col < COLS) {
        printf("%d ", array[row][col]);
        col++;
    }
    printf("\n");
    row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2 
Inner  loop: col  = 3 

col 3

1

5 0 6 3row 2

4



COMP1511/COMP1911

● 2D_array.c
○ copy array

● diagonals.c
○ sum_diagonal_top_right

Recap of 2D Arrays Coding

19



COMP1511/COMP1911

Strings

20



COMP1511/COMP1911

● Strings are a collection of characters 
● In C a string is

○  an array of char
○  that ends with a special character ‘\0’ (null terminator)

Strings: What are they?

21

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’



COMP1511/COMP1911

● The null terminator ‘\0’ must be at the end of every string
○ If it does not have one it is not a string! Just an array of char

● The array must be big enough to store the extra character
● It is not displayed as part of the string 
● It is very useful to know when our string has come to an end, 

when we loop through the array of characters
● Anything in the array after the ‘\0’ is not part of the string

Null Terminator

22



COMP1511/COMP1911

Strings: How do we initialise them?

23

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

// the painful way

char word[] = {'h','e','l','l','o','\0'};

// the more convenient way which does the same thing

char word[] = "hello";



COMP1511/COMP1911

Strings: How do we print them?

24

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char word[] = "hello";
int i = 0;
while (word[i] != '\0') {
    printf("%c", word[i]);
    i++;
}

// the easy way

// using printf with %s

char word[] = "hello";

printf("%s", word);



COMP1511/COMP1911

simple_strings.c
● declaring, 
● initialising, 
● modifying,
● printing strings,
● writing our own printing function 

Code Demo

25



COMP1511/COMP1911

● No. Please don’t. It can read strings that are too long to fit in the 
array
○ Overwrite other memory - buffer overflow
○ Security Vulnerability
○ Hackers can exploit this
○ You will see more about this in COMP1521

● It may not do what you expect/want anyway
○ Stops when it encounters whitespace

● It is forbidden in the style guide. You will lose marks for using it

Strings: Can I read them in with scanf %s?

26



COMP1511/COMP1911

We fgets them:  fgets(array, size, stream);
fgets needs three inputs:
● array - the array that the string will be stored into
● size - the size of the array

○ fgets will only read in and store a max of  size - 1 characters 
● stream - this is where this string is coming from

○ For this course it will always be stdin (standard input: by default 
the input will always be from terminal) 

Strings: How do we read them in?

27



COMP1511/COMP1911

One call to fgets will read in characters until
● size - 1 characters are read in
● a newline character is read in 

○ this newline character is stored in the array
● we get to the end of file 

○ which is Ctrl+D on a line of its own for terminal input

Note: There is a matching function that prints strings out
fputs(array, stream);
● For this course stream will always be stdout (terminal) 

Strings: How do we read them in?

28



COMP1511/COMP1911

char array[MAX_LENGTH];

// Read in the string into array of length MAX_LENGTH 

// from standard input - which by default is the terminal

fgets(array, MAX_LENGTH, stdin);

Strings: How do we read them in?

29

char char char char char char

0 1 2 3 4 5

‘h’ ‘i’ ‘\n’ ‘\0’ ? ?

Assume MAX_LENGTH is 6 and the user types in hi then presses 
enter we would get an array like:



COMP1511/COMP1911

// Declare an array to store your string
char array[MAX_LENGTH];

printf("Type in a string to echo: ");
// Read a string into array again and again
// until Ctrl+D is pressed (indicated by fgets returning NULL)
while (fgets(array, MAX_LENGTH, stdin) != NULL) {
    printf("The string is:\n");
    printf("%s", array);
    printf("Type in a string to echo: ");
}

Strings: How do we read in many of them?

30

Note: We are only ever storing 1 string at a time with this code



COMP1511/COMP1911

You can use these to make your life easier when working with 
characters!

  
   

ctype.h library functions 

31

toupper() convert a character to uppercase

tolower() convert a character to lowercase

isupper() test whether a character is uppercase

islower() test whether a character is lowercase

Find more here: https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm


COMP1511/COMP1911

read_strings.c
● Read in a string
● Try reading in a string that is too long
● Repeatedly read in a string
● Convert string to all capitals

 

Code Demo: Reading in Strings

32



COMP1511/COMP1911

Some other useful functions for strings:

  
   

string.h library functions 

33

strlen() gives us the length of the string excluding the '\0'

strcpy() copy the contents of one string to another

strcmp() compare two strings

strcat() append one string to the end of another (concatenate)

strchr() find the first occurance of a character in a string

Find more here: https://www.tutorialspoint.com/c_standard_library/string_h.htm

https://www.tutorialspoint.com/c_standard_library/string_h.htm


COMP1511/COMP1911

String Functions: strcpy strlen

34

// Declare an array to store a string

char puppy[MAX_LENGTH] = "Boots";

// Copy the string "Finn" into the word array

// be careful the array is big enough so you do not overflow

// the array

strcpy(puppy, "Finn");

printf("%s\n", puppy);

// Find string length. It does NOT include '\0' in the length

int len = strlen(puppy);

printf("%s has length %d\n", puppy, len);



COMP1511/COMP1911

String Functions: strcmp

35

// Declare an array to store a string

char name[] = "Oscar";

// Use strcmp to compare 2 strings

// It will return 0 if the strings are equal

// A negative number if the first string < second string

// A positive number if the first string > second string

if (strcmp("Edgar", name) == 0) {
    printf("Hello Oscar!\n");
} else {
    printf("You are not Oscar!\n");
} 



COMP1511/COMP1911

String Functions:  fgets and strcmp

36

// Declare an array to store a string
char name[MAX_LENGTH];
printf("Type in a name: ");

// Read in a string
fgets(name, MAX_LENGTH, stdin);

// Use strcmp to compare 2 strings
if (strcmp("Oscar", name) == 0) 

printf("Hello Oscar!\n");
} else {
    printf("You are not Oscar!\n");
} 

What issue would 
we get here?



COMP1511/COMP1911

string_functions.c

String Functions Demo

37



COMP1511/COMP1911

// This array can store 3 strings. 

// Each string has max size 5, including ‘\0’

char words[3][5] = {"hat", "cake", "tea"};

● You can have an array of strings!
● You can also think of it as a 2D 

array of characters

Array of Strings

38

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”



COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 1 index gives us a row/string 

// This would print “cake”

printf("%s\n", words[1]);

● You can have an array of strings!
● You can also think of it as a 2D 

array of characters

Array of Strings

39

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”



COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 2 indexes gives us a character

// This would print the ‘e’ from “tea”

printf("%c\n",words[2][1]);

● You can have an array of strings!
● You can also think of it as a 2D 

array of characters

Array of Strings

40

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”



COMP1511/COMP1911

array_of_strings.c
● initialise data
● print out data

Coding Demo: Array of Strings

41



COMP1511/COMP1911

What are Command Line Arguments?

42



COMP1511/COMP1911

● So far, we have only given input to our program after we have 
started running that program (using scanf() or fgets()) 

● Our main function prototype has always been  
int main(void);

● Command line arguments allow us to give inputs to our 
program at the time that we start running it! E.g.

Command Line Arguments

43

$ dcc prog.c -o prog
$ ./prog argument1 argument2 argument3 argument4
$ ./prog 123 hello 



COMP1511/COMP1911

● To use command line arguments you need to change your main 
function prototype to
int main(int argc, char *argv[])

● argc
○ a counter for how many command line arguments you have 

(including the program name) 
● char *argv[]

○ an array of the different command line arguments 
○ each command line argument is a string (an array of char) 

Command Line Arguments

44



COMP1511/COMP1911

● If we ran our program as follows:

Command Line Arguments

45

$ ./prog 123 dog “hello world”

● argc would be equal to 4
● argv would be an array of strings we can visualise as follows:  

0 1 2

“./prog” “123” “dog” “hello world”

3



COMP1511/COMP1911

int main(int argc, char *argv[]) {
    printf("There are %d command line arguments\n", argc);
   
    // argv[0] is always the program name
    printf("This program name is %s\n", argv[0]);

    // print out all arguments in the argv array
    for (int i = 0; i < argc; i++) {
        printf("Argument at index %d is %s\n", i, argv[i]);
    }
    return 0;
}

Command Line Arguments

46



COMP1511/COMP1911

$ dcc -o command_line_args command_line_args.c 
$ ./command_line_args 123 dog "Hello World" COMP1511
This program has 5 command line arguments
This program name is ./command_line_args
Argument at index 0 is ./command_line_args
Argument at index 1 is 123
Argument at index 2 is dog
Argument at index 3 is Hello World
Argument at index 4 is COMP1511

Command Line Arguments

47



COMP1511/COMP1911

● You may want to use your command line arguments to perform 
calculations, but they are strings!

● There is a function that converts strings to integers: 
○ atoi() in the standard library: <stdlib.h>
○ E.g. int x = atoi("952") 

■ Would give us a value of 952 stored in x

Converting Strings to Integers: atoi

48



COMP1511/COMP1911

Converting Strings to Integers: atoi

49

int main(int argc, char *argv[]) {

    int sum = 0;

    for (int i = 1; i < argc; i++) {

        sum = sum + atoi(argv[i]);

    }

    printf("%d is the sum of all command line args\n", sum);

    return 0;

}



COMP1511/COMP1911

● command_line_args.c
● atoi_demo.c

Command Line Arguments

50



COMP1511/COMP1911

Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.

51

https://forms.office.com/r/EUq6MitZp4



COMP1511/COMP1911 52

● recap 2D arrays
○ 2D_array.c, diagonals.c

● strings
○ simple_strings.c, read_strings.c, string_functions.c

● arrays of strings
○ array_of_strings.c

● command line arguments
○ command_line_args.c, atoi_demo.c

What did we learn today?



COMP1511/COMP1911

Sasha will be back next week!

I hope you all learn a lot this term and enjoy your coding!

Have fun!!!!

Bye!!!!!!!!!!!!!!!!!!

Enjoy the Rest of the Term!

53



COMP1511/COMP1911 54

Content Related Questions:  
Forum

Admin related Questions email: 
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/21146/discussion
mailto:cs1511@unsw.edu.au

