
COMP1511/COMP1911

COMP1511 Programming Fundamentals

Week 4 Lecture 1

Arrays of structs
2D Arrays

1

COMP1511/COMP1911

Census data is Thursday 13th March 11:59pm
Last day to drop (T1) courses without financial liability.

Census Date this thursday

2

COMP1511/COMP1911

● Assignment 1 will be released after this lecture at 1pm
● The assignment will be due Mon Wk7 @ 5PM
● It is an individual assignment
● Aims of the assignment

○ Apply arrays and two-dimensional arrays to problem solving
○ Apply the use of functions in code
○ Practice skills in debugging code, and skills in patience as you

search for your missing semicolons
○ Apply good style

■ You will be assessed on style! 20% of your mark

Assignment 1

3

COMP1511/COMP1911

We will be running two revision classes this week to go over the content
that we have learned for the past four weeks and solidify our knowledge.

The revision sessions are:

● Week 4 Monday 10/03/2025 2PM-4PM - Brass Lab J17 305
● Week 4 Thursday 13/03/2025 4PM-6PM - Online

Please sign up for the revision sessions here.

The access code is "COMP1511", case sensitive and without the quotes.

More info in this post.

Revision Sessions

4

https://buytickets.at/comp1511unsw/1605881
https://edstem.org/au/courses/21146/discussion/2456127

COMP1511/COMP1911

All help sessions held for the term will be on this timetable:

https://cgi.cse.unsw.edu.au/~cs1511/current/flask.cgi/help-sessions/

They are drop-in. You do not need to book these.

Help Sessions

5

https://cgi.cse.unsw.edu.au/~cs1511/current/flask.cgi/help-sessions/
https://cgi.cse.unsw.edu.au/~cs1511/current/flask.cgi/help-sessions/

COMP1511/COMP1911

Last Week
● Functions
● Style
● Arrays

We have covered a lot in the course so far!

You will get plenty of chances to practice these skills in tutorials
and labs and assignments.
We don’t expect you to have mastered them all yet.

6

COMP1511/COMP1911

Today’s Lecture
● Recap arrays and functions with arrays
● Array of structs
● 2D Arrays

7

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_4/

Link to Week 4 Live Lecture Code

8

Disclaimer:

Sometimes live lecture code is not cleaned up and polished!!! It may have
some things that are not 100% perfect style.

I also sometimes have extra comments explaining how C works that
would not be needed usually.

https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_4/

COMP1511/COMP1911

So let's say we have this declared and initialised:

This is what it looks like visually:

Note: The array holds 7 elements. Indexes start at 0

Visualising an Array

9

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0
○ Trying to access an index that does not exist, will result in an error

chocolate_eating[2] would access the third element

Accessing Elements in an Array

10

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

Traversing an Array

11

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

Start at index 0
chocolate_eating[0]

COMP1511/COMP1911

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

Traversing an Array

12

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[1]

COMP1511/COMP1911

Traversing an Array

13

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[2]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

14

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[3]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

15

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[4]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

16

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[5]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

17

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[6]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

● Write a function to print out odd numbers in the array as a
function

● Find the maximum in an array as a function
● What test cases should we choose?

Array Coding Exercises

18

COMP1511/COMP1911

Can you have an array of structs?

19

COMP1511/COMP1911

Arrays of structs

20

struct

0 1 2 3 4

1

struct coordinate {

 int x;

 int y;

};

// Declare an array of

// type struct coordinate

// of size 5

struct coordinate map[5];

map[0].x = 3;

map[0].y = 1;

3

struct struct struct struct

COMP1511/COMP1911

● struct_array.c
○ Read in data for an array of coordinates
○ Print out the array of coordinates
○ Move all coordinates by a constant value in the x direction

Code Demo of Array of structs

21

COMP1511/COMP1911

2D Arrays
(Arrays of Arrays)

22

COMP1511/COMP1911

2D Arrays: Declaring

23

int number_grid[3][5];

type of data

stored in array

name of the array Dimension 1:

number of rows

● This declares a 2D array (an array of arrays) called
number_grid that can store 3 rows with 5 columns of ints in
each row

Dimension 2:

number of cols

COMP1511/COMP1911

2D Arrays: Accessing Indexes

24

// A 2D array with 3 rows and 5 columns of int

int number_grid[3][5];

// To access an element you need to give 2 indexes

number_grid[2][3] = 42;

col 0

row 0

col 1 col 2 col 3 col 4

row 1

row 2 42

COMP1511/COMP1911

2D Arrays: Declaring and Initialising

25

// A 2D array with 3 rows and 5 columns of int

int number_grid[3][5] = {{2, 4, 6, 8, 10},

 {1, 2, 3, 4, 5},

 {9, 7, 0, 8, -1}};

col 0

row 0 2

1

9

col 1

4

2

7

col 2

6

3

0

col 3

8

4

col 4

10

5

-1

row 1

row 2 8

COMP1511/COMP1911

Think back to the code we wrote with nested while loops that
printed out a grid of numbers.

2D Arrays: Nested While Loops

26

int row = 0;

while (row < SIZE) {

 int col = 0;

 while (col < SIZE) {

 printf("%d ", col);

 col++;

 }

 printf("\n");

 row++;

}

COMP1511/COMP1911

2D Arrays: Traversal

27

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 0

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

28

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 1

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

29

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 2

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

30

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 3

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

31

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 0

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

32

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 1

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

33

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 2

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

34

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 3

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

35

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 0

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

36

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 1

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

37

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 2

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

38

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 3

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

● 2D_array_numbers.c
○ print array
○ read in data
○ sum data
○ print sum of each row
○ print sum of each column

● diagonals.c
○ sum diagonal starting at top left
○ sum diagonal starting at top right

Demo

39

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

40

https://forms.office.com/r/ED8H2Fbs9R

COMP1511/COMP1911 41

● Recap arrays (numbers_functions.c)
● Arrays of structs (struct_array.c)
● 2D Arrays (2D_array.c, diagonals.c)

Assignment 1 should be out now! Go have a look!!!

What did we learn today?

COMP1511/COMP1911 42

● strings
○ We will finally be able to store text in our variables!!!!!

● arrays of strings
● command Line arguments (if time)

Next Lecture

COMP1511/COMP1911 43

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/21146/discussion
mailto:cs1511@unsw.edu.au

