
COMP1511/COMP1911

COMP1511 Programming Fundamentals
 

Week 3 Lecture 2

Arrays

1



COMP1511/COMP1911

Last Lecture
● Structs with enums
● Functions - what/how/why?

2



COMP1511/COMP1911

Today’s Lecture
● Quick Function Recap
● Style
● Handy Shorthand
● Arrays
● Look at some functions with arrays!

3



COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_3/

Link to Week 3 Live Lecture Code

4

https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_3/


COMP1511/COMP1911

Functions Recap

5



COMP1511/COMP1911

What?
● A function is a block of code that performs a specific task

Why?
● Improve readability of the code
● Improve reusability of the code 
● Debugging is easier (you can narrow down which function is 

causing issues) 
● Reduces size of code (you can reuse the functions as needed, 

wherever needed) 

Functions Recap : What and Why?

6



COMP1511/COMP1911

● Variables declared outside a function have global scope
○ Do NOT use these!

Global Variables

7

// result is a global variable BAD DO NOT USE IN COMP1511

int result; 

int main(void) {

    // answer is a local variable GOOD 

    int answer;

    return 0;

}



COMP1511/COMP1911

● Primitive types such as int, char, double and also enum and 
structs are passed by value
○ A copy of the value of the variable is passed into the function 

E.g. This increment function is just modifying its own copy of x

Passing by Value

8

void increment(int x) {

    // modifies the 

    // local copy of x

    x = x + 1;

}



COMP1511/COMP1911

Passing by Value

9

int main(void) {

    int x = 10;

    // passes the value 10

    // into the function

    increment(x);

    // x will still be 10

    printf("Main: %d\n", x);

    return 0;
}

void increment(int x) {

    // modifies the 

    // local copy of x

    x = x + 1;

    printf("Inc: %d\n", x);

}

1110



COMP1511/COMP1911

Using Functions in Conditions

10

You can call functions inside your if statements or your while 
loops like this:

while (scanf("%d", &n) == 1) {

    ...

}

if (area_triangle(b, h) < 10) {

    ...

}

Note: You can’t do this with functions that have void return types



COMP1511/COMP1911

Some handy shorthand!!

11



COMP1511/COMP1911

Increment and Decrement

12

// Increment count by 1

count = count + 1;

count++;

// Decrement count by 1

count = count - 1;

count--;

// Increment count by 5

count = count + 5;

count += 5;

// Decrement count by 5

count = count - 5;

count -= 5;



COMP1511/COMP1911

● Very similar to while loops!
● You can do everything you 

need with a while loop
● for loops are really just a 

short hand for while loops in C 
● for loops are very handy for 

loops when you know the 
number of iterations you need!
○ counting loops

for loops

13



COMP1511/COMP1911

For loop structure

14

for (int count = 0; count < 10; count++) {

    //Do something

}

initialisation:

Executed before 

the loop begins

expression:

Evaluated before 

each iteration. 

exits loop when 

falsee 

increment:

Executed at the 

end of each 

iteration



COMP1511/COMP1911

These two loops do exactly the same thing!

while loop vs for loop

15

int i = 0;

while (i < 10) {

    printf("%d\n", i);

    i++;

}

for (int i = 0; i < 10; i++) {

    printf("%d\n", i);

}



COMP1511/COMP1911

● The code we write is for human eyes
● We want to make our code:

○ easier to read
○ easier to understand

● Coding should always be done in style - it is worth it…
○ ensures less possibility for mistakes
○ ensures faster development time
○ You also get marks for style in assignments
○ If we need to mark your code in the final manually it is good if it is 

not a dog’s breakfast

What is Style? Why Style?

16



COMP1511/COMP1911

● Indentation and Bracketing
● Names of variables and 

functions
● Structuring your code
● Nesting
● Repetition
● Comments 
● Consistency

What is Good Style?

17

MEME



COMP1511/COMP1911

Bad Style Demo

18

Let’s look at 
bad_style.c
● What are some 

things we should 
fix?



COMP1511/COMP1911

● Write comments where they are needed 
● Name your variables based on what that variable is there to do
● In your block of code surrounded by {}:

○ Indent 4 spaces
○ Vertically align closing bracket with statement that opened it 

● One expression per line 
● Consistency in spacing 
● Watch your code width (<= 80 characters)
● Watch the nesting of IFs - can it be done more efficiently? 
● Break code into functions

Clean as you go

19



COMP1511/COMP1911

● Often different organisations you work for, will have their own 
style guides, however, the basics remain the same across

● Your assignment will have style marks attached to it 
● We have a style guide in 1511 that we encourage you to use to 

establish good coding practices early:
● https://cgi.cse.unsw.edu.au/~cs1511/25T1/resources/style_guide.html

Style Guide

20

https://cgi.cse.unsw.edu.au/~cs1511/25T1/resources/style_guide.html


COMP1511/COMP1911

Arrays

21



COMP1511/COMP1911

What if you wanted to store many 
related values of the same type?

22



COMP1511/COMP1911

Number of Chocolates Eaten

23

int day_1 = 2;

int day_2 = 3;

int day_3 = 3;

int day_4 = 5;

int day_5 = 7;

int day_6 = 1;

int day_7 = 3;

// Any day with 3 or more is too much!

if (day_1 >= 3){

    printf("Too many chocolates\n");

}

if (day_2 >= 3) {...

Does this seem repetitive? What if I tracked a year’s worth??!!



COMP1511/COMP1911

● A data structure is a way of organizing and storing data so that 
it can be accessed and used efficiently

● In this course we will learn about two pretty cool data 
structures:
○ Arrays (NOW!)
○ Linked Lists (after flexibility week)

● There are other data structures that you will learn about in 
further computing courses

● Choosing the right data structure depends on what the problem 
is and what you are trying to achieve. 

Data Structures

24



COMP1511/COMP1911

● A collection of variables all of the same type (homogenous)
○ Think about how this is very different to a struct

● A contiguous data structure
○ All data in an array is stored in consecutive memory locations

● A random access data structure
○ We can access any data in the collection directly without having to 

scan through other data elements
● An indexed structure

○ We just have one variable identifier for the whole collection of data
○ We can uses indexes to access specific pieces of data

Arrays!

25



COMP1511/COMP1911

Declaring an Array

26

int chocolate_eating[7];

type of data 

stored in array

name of the array size: number of 

items in the array

● This declares an array named chocolate_eating, that can store 7 
integers



COMP1511/COMP1911

Declaring and Initialising an Array

27

// This declares an array named chocolate_eating, 

// that can store 7 integers and initialises

// their values to 4, 2, 5, 2 and so on.

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1}; 

// This would declare the array and 

// initialise all values to 0

int chocolate_eating[7] = {};



COMP1511/COMP1911

Declaring and Initialising an Array

28

// This is illegal and does not compile

// You can only use this initialisation syntax

// when you declare the array

// NOT later

int chocolate_eating[7];

chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

// This is the correct way all in one line

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1}; 



COMP1511/COMP1911

So let's say we have this declared and initialised:

This is what it looks like visually:

Note: The array holds 7 elements. Indexes start at 0

Visualising an Array

29

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1}; 

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1



COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0 
○ Trying to access an index that does not exist, will result in an error

chocolate_eating[2] would access the third element 

Accessing Elements in an Array

30

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1}; 

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1



COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0 
○ Trying to access an index that does not exist, will result in an error

chocolate_eating[7] would cause a run-time error 

Accessing Elements in an Array

31

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1}; 

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1



COMP1511/COMP1911

● You can't printf() a whole array
○ but you can print individual elements 

● You can't scanf() a whole array at once
○ but you can scanf() individual elements 

● You can’t assign a whole array to another array variable
○ but you can create an array and copy the individual elements 

A closer look at arrays

32

int a[7] = {4, 2, 5, 2, 0, 3, 1};

int b[7] = a;  // You can’t do this!



COMP1511/COMP1911

Does this look repetitive? 

Printing elements in an array

33

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
printf("%d ", chocolate_eating[0]);
printf("%d ", chocolate_eating[1]);

printf("%d ", chocolate_eating[2]);

printf("%d ", chocolate_eating[3]);

printf("%d ", chocolate_eating[4]);

printf("%d ", chocolate_eating[5]);

printf("%d ", chocolate_eating[6]);  

How could we do this in a better way?



COMP1511/COMP1911

Traversing an Array

34

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}

Start at index 0
chocolate_eating[0]



COMP1511/COMP1911

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}

Traversing an Array

35

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[1]



COMP1511/COMP1911

Traversing an Array

36

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[2]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}



COMP1511/COMP1911

Traversing an Array

37

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[3]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}



COMP1511/COMP1911

Traversing an Array

38

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[4]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}



COMP1511/COMP1911

Traversing an Array

39

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[5]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}



COMP1511/COMP1911

Traversing an Array

40

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[6]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
    printf("%d ", chocolate_eating[i]);
    i++;
}



COMP1511/COMP1911

 Demo arrays!
simple_array.c
numbers.c 

print array,  (while loop and for loop)
sum, 
average, 
divisible by 4, 
multiply by 2,
scan in numbers

numbers_functions.c

41



COMP1511/COMP1911

Arrays and Functions
● We can pass arrays into functions!
● The function needs a way of knowing the size of the array

42

// Can pass in array of int of any size 

void print_array(int size, int array[]);



COMP1511/COMP1911

Arrays and Functions

43

void print_array(int size, int array[]);

int main(void) {
int marks[] = {9, 8, 10, 2, 7};

    int ages[] = {21, 42, 11};

    print_array(5, marks);
    print_array(3, ages);
    return 0;
}
void print_array(int size, int array[]) {
    for (int i = 0; i < size; i++) {
        printf("%d ", array[i]);
    }
}



COMP1511/COMP1911

Arrays and Functions

44

● Functions do not get a copy of all the array values passed into 
them.

● They can access the original array from the calling function
● This means they can modify the values directly from the 

function
● More about this in future weeks!



COMP1511/COMP1911

Arrays and Functions

● We can pass an 
array into a 
function and 
initialise all the 
values like this!!

int main(void) {

    int marks[SIZE];  

    scan_marks(SIZE, marks);

    print_marks(SIZE, marks);

    return 0;

}

void scan_marks(int size, int array[]) {

    for (int i = 0; i < size; i++) {

        scanf("%d ", &array[i]);

    }

}

45



COMP1511/COMP1911

Arrays and Functions
● Trying to return an array 

from a function by doing 
something like this looks 
ok but fails spectacularly!

● We will explain this in 
more detail later in the 
course

46

// You can’t return an array like

// this from a function

int[] scan_marks(void) {

    int array[SIZE];

    for (int i = 0; i < SIZE; i++) {

        scanf("%d ", &array[i]);

    }

    return array;

}



COMP1511/COMP1911

Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.

47

https://forms.office.com/r/PcEMQSXP61



COMP1511/COMP1911 48

● Functions recap (pass_by_value.c scanf_loop.c)
● Arrays (simple_array.c numbers.c)
● Arrays with Functions (numbers_functions.c)

What did we learn today?



COMP1511/COMP1911 49

● Lectures:
○ 2D arrays
○ strings

● Assignment 1 will be released next week 
○ Material covered in lectures next week will be very important 

Next Week



COMP1511/COMP1911 50

Content Related Questions:  
Forum

Admin related Questions email: 
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/21146/discussion
mailto:cs1511@unsw.edu.au

