COMP1511 Programming Fundamentals

Week 2 Lecture 2

Loops
Custom Data Types

COMP1511/COMP1911



Link to Week 2 Live Lecture Code

https://cqgi.cse.unsw.edu.au/~cs1511/25T1/code/week 2/

COMP1511/COMP1911


https://cgi.cse.unsw.edu.au/~cs1511/25T1/code/week_2/

Yesterday's Lecture

e Conditions and if statements

o Relational Operators, Logical Operators

o if-else, chaining if-else, nested if statements
o While loops

o Infinite loops

o Counting loops

COMP1511/COMP1911



Today's Lecture

e More single while loops
e Nested While Loops

o Custom data types
o structs
o enums

COMP1511/COMP1911



Recap scanf return

scanf_return.c

COMP1511/COMP1911



3 Ways of Controlling while loops

e counting loops

o The number of iterations is known

o Use a variable as a counter to control how many times a loop runs
e conditional loops

o We may not know how many times we will need to loop

o Conditions terminate the loop based on calculations or user input
e sentinel loops

o Special case of conditional loops

o A sentinel loop continues to execute until a special value (the

sentinel value) is encountered.

COMP1511/COMP1911



Counting while loops

e Use aloop control variable (“loop counter”) to count loop
repetitions.
o We stop when the loop reaches a certain limit.

e Useful when we know how many iterations we want.

// 1. Initialise loop counter before the loop

int counter = 0;

while (counter < 10) { // 2. check loop counter condition
printf ("Here we go loop de loop!\n");

counter = counter + 1; // 3. update loop counter

}

COMP1511/COMP1911



Conditional Loops

o Iterate as long as your condition is still true
e Used when we don't know how many times we need to loop

// 1. Initialise the loop control variable
int total kombucha ml = 0;
int kombucha ml;
while (total kombucha ml <= 2000) { // 2. Test the loop condition
printf ("Please enter the ml of kombucha: ") ;
scanf ("%d", &kombucha ml) ;
// 3. Update loop control variable
total kombucha ml = total kombucha ml + kombucha ml;
}
printf ("Stop! That would bring you to %dml''\n", total kombucha ml) ;

COMP1511/COMP1911



Sentinel Loops

e Process data until reaching a special value (sentinel value)
o Special case of conditional loop

int number = 0;
int end loop = 0; // 1. Initialise the loop control variable

while (end loop == 0) { // 2. Test the loop condition

scanf ("%d", &number) ;
if (number < 0) { // We want a negative value to end the loop

end loop = 1; // 3. Update the loop control variable

} else {
printf ("You entered %d\n", number) ;

}

COMP1511/COMP1911



Code Demo

while_count .C
while_condi tion.c
while_sentinel .C

Write a program that reads integers from the user and sums them

until a non-integer input is encountered
while scanf sum.c

COMP1511/COMP1911

10



Nested While Loops

e Aloopinaloop
o If weputaloopinsidealoop...
e Eachtime aloop runs
o It runs the other loop
e The inside loop ends up running
a LOT of times
e How many times does the
second hand go around the clock
for every minute? For every hour?

COMP1511/COMP1911

11



Why are nested while loops useful?

How could we print out Or this?
something like this?

1 2345 1

1 2345 1 2

1 2345 1 2 3

1 2345 1 2 3 4
1 2 3 45 1 2345

COMP1511/COMP1911

12



Code Demo Nested While Loop

grid.c
pyramid.c
clock.c (if we have time)

COMP1511/COMP1911

13



Custom Data Types

COMP1511/COMP1911



Organising related data

|s there a better way of storing related data?

char my first initial = 'A';

char my last initial = 'F';

int my age = 23;

double my lab mark = 2.4;

char brianna first initial = 'B';
char brianna last initial = 'K';
int brianna age = 21;

double brianna lab mark = 9.9;

COMP1511/COMP1911

15



Organising related data

|s there a better way of storing related data?

char my first initial = 'A';
char my last initial = 'F';
int my age = 23;

double my lab mark = 2.4;

char brianna_last_initial = 'K';
int brianna age = 21;

double brianna lab mark = 9.9;

char brianna_first_initial = 'B';

COMP1511/COMP1911

We could group the
data related to a
person

16



Organising related data

|s there a better way of storing related data?

int x1 = 0;
int yl = 0;
int z1 = 0;
int x2 = 10;
int y2 = -5;
int z2 = 5;

COMP1511/COMP1911



Organising related data

|s there a better way of storing related data?

int x1 = 0;
int yl = 0;
int z1 = 0;
int x2 = 10;
int y2 = -5;
int z2 = 5;

COMP1511/COMP1911

We could group the
data related to a
coordinate

18



User defined Data Type: struct

e So far, we have used built-in C data types (int, char, double)

e These store a single item of that type

e structs allow us to define our own data types (structures) to
store a collection of types

o Before we can create struct variables, we need to define the

struct (outside the main)

o Note this does not create a variable or set aside any memory.
o It just defines the type.

e Then we declare and use struct variable/s

COMP1511/COMP1911 19



1. Defining a struct

o We define our structs before our main function.
e structs are types that we design, made up of data elements

that we decide belong together
o we call these elements members or fields
o we need to define a type and name for each member

struct student {
char first initial;
char last initial;
int age;
double lab mark;

}i

COMP1511/COMP1911

20



2. Declaring a struct variable

e Creating variables using your custom struct type

struct student {
char first initial;
char last initial;
int age;

double lab mark;

COMP1511/COMP1911

int main(void) {
// Declare a variable

// of type struct student

struct student brianna;

21



3. Initialising struct data

o We access a member of a struct by using the dot operator .

struct student { int main(void) {
char first initial; // Declare a variable
char last initial; // of type struct student
int age; struct student brianna;
double lab mark; // Initialise the members of
}; // your struct variable
brianna.first initial = 'B';
brianna.last initial = 'K';

brianna.age = 21;

brianna.lab mark = 9.9;

COMP1511/COMP1911 22



3. Exercise: Using structs

Create another student struct and read in data

from user

int main(void) {

struct student ({ // Declare a variable
char first initial; // of type struct student
char last initial; struct student brianna;
int age; // Initialise the members of
double lab mark; // your struct variable
}; brianna.first initial = 'B';
brianna.last initial = 'K';
brianna.age = 21;
brianna.lab mark = 9.9;

COMP1511/COMP1911

23



Exercise: Using structs

e Set point_1 to (0, 0, 0) and point_2 to (10, -5, 5)

e Print out the point structs

struct coordinate {
int x;
int y;

int z;

COMP1511/COMP1911

int main(void) {
// Declare 2 variables of
// type struct coordinate
struct coordinate point 1;

struct coordinate point 2;

24



Enumerations

o Data types that allow you to assign names to integer constants

to make it easier to read and maintain your code
o By default the enumerated constants will have int values 0, 1, 2, ...
o Note you can't have two enums with the same constant names

// Example of the syntax used to define an enum

enum enum name {STATEO, STATEl, STATE2, ...};

// E.g. define an enum for day of the week
enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

// E.g. define an enum with specified int values
enum status _code {OK = 200, NOT FOUND = 404};

COMP1511/COMP1911

25



enum code example

// Define an enum with days of the week

// make sure it is outside and before the main function
// MON will have value 0, TUE 1, WED 2, etc

enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

int main (void) {
enum weekdays day;
day = SAT;
// This will print out 5
printf ("The day number is %d\n", day);

return O;

COMP1511/COMP1911

26



enum vs #define

e enums are useful when we want to define a specific fixed set of
constants
o The advantages of using enums over #defines

o Enumerations are automatically assigned values, which makes

the code easier to read

= Think of the case where you have a large number of related
constants

e #define are useful for other contexts such as constants that are
not integers or stand alone constant values

COMP1511/COMP1911 27



Feedback Please!

Your feedback is valuable! E

If you have any feedback from g
today's lecture, please follow the -
link below or use the QR Code.

feedback constructive, so | can E h. J .
action it and improve your

learning experience. https://forms.office.com/r/F56gV5WHM7

[=]

)

Please remember to keep your

COMP1511/COMP1911 28



What did we learn today?

e While loops
© while count.c, while conditional.c,
while sentinel.c, while scanf sum.c
o Nested while loops
©0 grid.c, pyramid.c, clock.c
e Structs
0 struct student.c, struct points.c
e €ENums

O enum weekdays.c

COMP1511/COMP1911

29



Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

COMP1511/COMP1911

30


https://edstem.org/au/courses/21146/discussion
mailto:cs1511@unsw.edu.au

