
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 9 Lecture 1

Linked Lists
A larger Application

1

COMP1511/COMP1911

Announcements
● Assignment 1 Marks:

○ Out early to mid week
● My Experience:

○ Keep an eye on your UNSW email for it we would love your
feedback

● Revision Sessions:
○ Last set of revision sessions on next week
○ Look out for announcement and sign ups on the Ed forum soon

2

COMP1511/COMP1911

Week 10 Practice Exams
● Held in Labs
● This is how you get lab marks for week 10

○ Marks are based on attempting it.
● If you are in an online tut-lab

○ you can sign up for an in-person lab for week 10
○ sign up details coming soon on Ed forum.

● Don’t miss this chance to see what the exam environment is
like and get used to it.

3

COMP1511/COMP1911

Last Week
● Inserting Nodes anywhere
● Deleting Nodes

○ From the start of the list
○ Freeing all nodes
○ Search and Delete Approach 1

4

COMP1511/COMP1911

Today’s Lecture
● Recap:

○ Linked List deletion First Node
○ Free all nodes
○ Linked List Search and delete approach 1

● Linked List Search and Delete
■ Second implementation
■ Extending first implementation to delete all occurrences

● Linked Lists a Larger Application.
○ Linked Lists with complex data (other than just int)
○ Multi-file Linked Lists
○ Helpful for assignment 2

5

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs 1511/24T3/live/week_9/

Link to Week 9 Live Lecture Code

6

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_9/

COMP1511/COMP1911

Deletion Recap

7

COMP1511/COMP1911

Deleting the First Node in a Linked List

8

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

temporary = 0x28

struct node *temporary = head;

Let’s create a pointer to the first node

COMP1511/COMP1911

Deleting the First Node in a Linked List

9

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

head = head->next;

Now we can update head

temporary = 0x28

COMP1511/COMP1911

Deleting the First Node in a Linked List

10

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

free(temporary);

Now we can free the first node

temporary = 0x28

COMP1511/COMP1911

Delete All Nodes the Correct Way

11

Let’s test it and check it with dcc –leak-check

// Delete all nodes from a given list

void delete_all_nodes(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 head = head->next;

 free(current);

 current = head;

 }

}

COMP1511/COMP1911

● We want to search for a node with a particular value in it and
then delete it

● Where could the item be
○ Nowhere - if it is an empty list or the list does not contain the

value
○ At the head (deleting the first node in the list)
○ Between any 2 nodes in the list
○ At the tail (deleting the last node in the list)
○ There could be multiple occurrences! For now let’s just consider

the first occurrence

Search and Delete

12

COMP1511/COMP1911

● To delete a node we need to link the previous node to the next
node
○ If we want to delete the node with 42, we need to find the node

before it

Search and delete: between 2 nodes

13

head 13 17 42 5

We need a pointer
to this node

NULL

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

14

head 13 17 42 5

previous =
NULL

NULL

current

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

15

head 13 17 42 5

NULL

currentprevious

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

16

head 13 17 42 5

previous

NULL

current

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

17

head 13 17 42 5

previous

NULL

current

COMP1511/COMP1911

// Approach 1: Have a previous node pointer

struct node *previous = NULL;

struct node *current = head;

while (current != NULL && current->data != search_key) {

 previous = current;

 current = current->next;

}

Search and delete: between 2 nodes

18

head 13 17 42 5

previous

NULL

current

COMP1511/COMP1911

Then we need to connect current node to the one after the one we
are deleting.

Search and delete: Approach 1

19

head 13 17 42 5

previous

NULL

current

42

COMP1511/COMP1911

Then we need to connect current node to the one after the one we
are deleting.

Search and delete: Approach 1

20

head 13 17 42 5

previous

NULL

current

previous->next = current->next;

42

COMP1511/COMP1911

Search and delete: Approach 1

21

head 13 17 42 5

previous

NULL

current

free(current);

Now we can free the node we want to delete

42

COMP1511/COMP1911

Let’s code up the second approach.
Let’s extend our first approach to delete all occurrences.

Coding

22

COMP1511/COMP1911

Email Management System

23

COMP1511/COMP1911

● Files/code provided (4 files):
○ email_management_system.c (TODO)
○ email_management_system.h (PROVIDED)
○ main.c (PROVIDED)
○ test_main.c (PROVIDED)

● Complete all `TODO` function definitions in
email_management_system.c

Email Management System

24

COMP1511/COMP1911

● Understand the Problem
○ what the provided code is doing
○ how it all fits together
○ how to compile it and run the code

● Draw diagrams
○ do this before/while coding each function too!

● Think about different test cases
○ do this before/while coding each function too!

Before you start coding

25

COMP1511/COMP1911

struct folder {
 char name[MAX_LEN];
 //to use later :)
 //int num_emails;
 struct email *emails;
};

structs

26

struct email {
 char sender[MAX_LEN];
 char subject[MAX_LEN];
 double size;
 enum email_type type;
 enum priority_type priority;
 struct email *next;
};

Which struct represents a linked list?

COMP1511/COMP1911

Visualisation of the system

27

COMP1511/COMP1911

Visualisation of the system

28

COMP1511/COMP1911

struct folder {
 char name[MAX_LEN];
 //to use later :)
 //int num_emails;
 struct email *emails;
};

structs

29

struct email {
 char sender[MAX_LEN];
 char subject[MAX_LEN];
 double size;
 enum email_type type;
 enum priority_type priority;
 struct email *next;
};

If I have a pointer to a struct folder named my_folder, how could I
access the head of the linked list?

COMP1511/COMP1911

Visualisation of the system

30

We can create many
folders, each
containing linked lists
of emails.

COMP1511/COMP1911

● We have 2 files that contain main functions.
● We can only have 1 main function per program.
● We can compile and run the first program as follows:

Compiling and running the code

31

● We can compile and second program as follows:

dcc -o test_main test_main.c email_management_system.c

./test_main

dcc -o main main.c email_management_system.c

./main

COMP1511/COMP1911

● Stage 1
○ create_folder
○ insert_email_at_head
○ search_email
○ clear_folders

● Stage 2
○ delete_email_of_priority
○ merge_folders
○ split_folder

Functions to Write

32

COMP1511/COMP1911

● Modify the implementation so that finding size of list is more
efficient by storing the size in the folder as a member.
○ You will need to make sure you update this value whenever you

add delete emails in the folder
● Sorting email lists

○ Sorting algorithms are not required knowledge for this course.
However you could take every node from one list and insert it into
a new list in order to get a sorted list.

● Creating an email management system struct that contains
multiple folders

Extensions

33

COMP1511/COMP1911 34

● Recap
○ Linked List Deletion
○ Implement search and delete approach 2
○ Extend approach 1 to delete all occurrences

● Larger Linked List Application
○ Multi-file program
○ Linked lists used inside of other structs
○ Linked lists containing complex data

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

35

https://forms.office.com/r/xdhUUfVSN7

COMP1511/COMP1911

Next Lecture: Your choice
● Revision OR
● Non-examinable topic recursion: poll

36

COMP1511/COMP1911 37

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Don’t forget to attend Help Sessions
if you need one on one help

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au
https://cgi.cse.unsw.edu.au/~cs1511/24T3/flask_tutors.cgi/help-sessions

COMP1511/COMP1911 38

UNSW Psychology & Wellness Support for Students | UNSW
Current Students

You may also find the following resources helpful:
Lifeline 13 11 14
Beyond Blue https://www.beyondblue.org.au/
Headspace centres https://headspace.org.au/
Transcultural mental health
https://www.dhi.health.nsw.gov.au/transcultural-mental-health-cen
tre-tmhc/about-us/contact-us

Struggling with non-course specific issues?

