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COMP1511/1911 Programming Fundamentals
 

Week 8 Lecture 1

Linked Lists
Inserting and Deleting
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Time: Monday  4:30
YouTube Link
Recording will also be available

Assignment Due Date: 
Friday Week 10 5pm

Don’t leave it until the last minute!
Help sessions will be very busy the 
week before the deadline!!!!!!!!

Assignment 2 Live Stream: CS Dungeon
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https://youtu.be/k4sJIMRXumQ
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Revision Sessions This Week
Wednesday 12pm - 2pm (K14 Physics LG18 Piano) 

Friday 2pm - 4pm (Online on Microsoft Teams)

Please sign up for the revision sessions 
by following this link 
https://buytickets.at/comp1511unsw/1414648

Vote here: COMP1511/COMP1911 – Ed Discussion
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https://buytickets.at/comp1511unsw/1414648
https://edstem.org/au/courses/19028/discussion/2328582
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Last Lecture
● Linked List Basics
● Creating nodes
● Printing a List
● Inserting nodes

○ At beginning

4



COMP1511/COMP1911

Today’s Lecture
● Recap: 

○ List basics
○ Print List

● Insert at Tail
● Inserting in the middle of a list

○ Finding the length of the list
● Inserting anywhere in the list
● Linked list deletion of first node (maybe if there is time 

otherwise we will leave until thursday)
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https://cgi.cse.unsw.edu.au/~cs 1511/24T3/live/week_8/

 

Link to Week 8 Live Lecture Code
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https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_8/
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The list variable is a pointer to 
the first node in the list

Linked List Nodes
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0x20  
0x24  
0x28 13
0x32  0x80
0x36
0x40
0x44
0x48  5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68  
0x72
0x76
0x80 17
0x84 0x60
0x88

struct node *list;

struct node *list

struct node {

    int data;

    struct node *next;

};
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Visualising Linked Lists
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x08
head = 0x28
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An empty List in C
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struct node {

    int data;

    struct node *next;

};

struct node *head = NULL;

head = NULL

0x08
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Creating a List with 1 Node in C
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struct node {

    int data;

    struct node *next;

};

struct node *head = NULL;

head = malloc(sizeof(struct node));

head->data = 21;
head->next = NULL;

21

0x88

head = 0x88

0x08

NULL
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Connect 2 nodes: Add new node to the start
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21

0x88

NULL

99

???

0x84

new_node = 0x84

0x16

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 99;
new_node->next = ???;

head = 0x88

0x08
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Connect 2 nodes: Add new node to the start
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21

0x88

NULL

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 21;
new_node->next = head;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x88

0x08
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Connect 2 nodes: Add new node to the start

13

21

0x88

NULL

head = new_node;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x84

0x08
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// Creates and returns a new node with given data and 
// next pointer. returns NULL if memory allocation fails.
struct node *create_node(int data, struct node *next){

    struct node *new_node = malloc(sizeof(struct node));

    if (new_node == NULL) {

     return NULL;

    }    

    new_node->data = data;

    new_node->next = next;

    return new_node;

}

Create Node Function
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Traversing a List 
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28
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Traversing a List 

16

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list
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Traversing a List 

17

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

struct node *current = head;

current = 0x28
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Traversing a List 

18

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along

current = 0x28
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Traversing a List 

19

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x80
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Traversing a List 

20

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x60
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Traversing a List 

21

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x48
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Traversing a List 

22

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

We should stop now that current == NULL
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// Traversing the list and printing the contents (data)

// from each node

void print_list(struct node *head) {

    struct node *current = head;

    while (current != NULL) {

        printf("%d ", current->data);

        current = current->next;

    }

    printf("\n");

}

Printing a list
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Where can I insert in a linked list?
● At the head (what we just did!)
● Between any two nodes that exist (later in this lecture!)
● After the tail as the last node (now!)

To insert a node at the end of the list we need to
● Find the last node in the list
● Connect the last node in the list to the new node

Inserting at the tail (end) of a list
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If we stop traversing the list when
current == NULL
We go PAST the tail of the list 

Finding the Tail of the list
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL
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We want to stop at the last node
How can we tell if we are at the last node?

Finding the Tail of the list
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48
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We want to stop when
current->next == NULL

Finding the Tail of the list
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48
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Then we can link the last node to 
the new node

Insert at the Tail of the list

28

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72
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current->next = new_node;

Insert at the Tail of the list

29

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

0x72

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72
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// What valid input could cause this function to break? 

void insert_at_tail(struct node *head, int data){

    struct node *current = head;

    // Find the tail of the list

    while (current->next != NULL) {

        current = current->next;

    }

    // Connect new node to the tail of the list

    struct node *new_node = create_node(data, NULL);

    current->next = new_node;

 }

Inserting at Tail (with a big bug)
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It is always important to test your linked list functions with:
● An empty list
● A list with one node
● A list with more than one node

Our function only inserts at the end of the list. If we were writing a 
function to insert anywhere into a list we would want to test

● Inserting at the beginning
● Inserting in the middle
● Inserting at the end

Linked List Test Cases
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If we have an empty list 

○ head == NULL;
○ so then current == NULL;
○ so current->next 

will be dereferencing a NULL pointer and result in a run time error

Inserting At Tail Code Bug
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void insert_at_tail(struct node *head, int data){

    struct node *current = head;

    // Find the tail of the list

    while (current->next != NULL) {



COMP1511/COMP1911

void insert_at_tail(struct node *head, int data){  

    struct node *new_node = create_node(data, NULL);

    if (head == NULL) { // Special case for empty list

        head = new_node;

    } else {

        struct node *current = head;

        // Find the tail of the list

        while (current->next != NULL) {

            current = current->next;

        }

        // Connect new node to the tail of the list        

        current->next = new_node;
    }
 }

Inserting at Tail (still with a bug)
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The code no longer crashes!!!
But we still end up with an empty list when we use the function.
Why?

Inserting At Tail Code Bug
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 int main(void) {

    struct node *head = NULL;

    insert_at_tail(head, 9);

    // local variable head is in main is still NULL

    return 0;

 }
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We need to modify the prototype so it can return the head of the list
and we need to assign that return value to our local variable. 

Fixing Inserting at Tail Code
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struct node *insert_at_tail(struct node *head, int data);

int main(void) {

    struct node *head = NULL;

// local variable head has been updated :)

    head = insert_at_tail(head, 9); 

    return 0;

 }



COMP1511/COMP1911

struct node *insert_at_tail(struct node *head, int data){ 

struct node *new_node = create_node(data, NULL); 

    if (head == NULL) { // Special case for empty list

        head = new_node;

    } else {

        struct node *current = head;
        // Find the tail of the list
        while (current->next != NULL) {
            current = current->next;
        }
        // Connect new node to the tail of the list        
        current->next = new_node;
    }
    return head;
 }

Inserting at Tail

36
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We have looked at 2 special cases
● Inserting at the beginning of a list
● Inserting at the end of a list

Now we want to be able to insert anywhere. Lets try right in the 
middle of the list!

Inserting Into a Linked List
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Inserting in the Middle of the List

38

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

We want to insert a new node at position list_size/2, assuming 

positions start at 0. In this case that is position 2
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Inserting in the Middle of the List

39

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Use a counter and stop traversing when we get to the node before 

the position we want to insert at (size/2 - 1). In this case position 1. 
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Inserting in the Middle of the List

40

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

struct node *current = head;

int counter = 0;

current = 0x28



COMP1511/COMP1911

Inserting in the Middle of the List

41

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

while (counter < size/2 - 1) {
    current = current->next;
    counter++;
}
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Inserting in the Middle of the List

42

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

Now we want to connect our new node. It should come after the 

current node, but before current->next
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Inserting in the Middle of the List

43

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

9

???

0x5C

new_node = 0x5C
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Inserting in the Middle of the List

44

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

9

0x60

0x5C

new_node = 0x5C
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Inserting in the Middle of the List

45

13

0x80

17 42

0x28 0x80 0x60

0x5C 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

current->next = new_node; 9

0x60

0x5C

new_node = 0x5C
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● What conditions will break this?
○ What happens if it is an empty list?
○ What happens if there is only 1 item in the list?
○ Anything else we should check?

● How can we modify our code to handle any of these situations 
that break it?

● How could we modify our code to write a function to insert at 
any given index?
○ What extra cases do we need to check now?

Coding: Inserting in the Middle of the List
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● How could we modify our code to write a function to insert at 
any given index?
○ What extra cases do we need to check now?

Coding: Inserting at any position in List



COMP1511/COMP1911

● Remember, you should always consider and make sure your 
solution works: 

● Inserting into an empty list 
● Inserting at the head of the list 
● Inserting after the first node if there is only one node
● Inserting somewhere in the middle
● Inserting at the end of the list

 Tip: Draw a diagram!!!! It will allow you to easily see what are some 
potential pitfalls 

Inserting Into a Linked List Test Cases
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Deletion

49
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Let’s write a function to delete the first node in a linked list.
We need to consider the case when the list is empty
● If it is empty we can’t delete anything
● We just return the head of the list which would be  NULL

Deleting the First Node in a Linked List

50

if (head == NULL) {

    return head; //or return NULL;

}
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If our list is not empty, we want to make the second node the new head of 
the list and free the first node that we want to delete. 

Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28
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What would be the problem calling free on head first?

Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

free(head);
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We can’t access memory that has been freed. We have lost the rest of the 
list

Deleting the First Node in a Linked List

53

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

// This will crash

head = head->next; 
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What would be the problem with updating head first?

Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next; 
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We now have no pointer to the first node so we can’t free it!

Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(???);
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Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

temporary = 0x28

struct node *temporary = head;

Let’s create a pointer to the first node
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Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next;

Now we can update head

temporary = 0x28
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Deleting the First Node in a Linked List
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13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(temporary);

Now we can free the first node

temporary = 0x28
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struct node *delete_first_node(struct node *head) {

   if (head == NULL) {

       return head;

   }

   struct node *temporary = head;

   head = head->next;

   free(temporary);

   return head;

}

Deleting the First Node from a List

59
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● Recap Linked Lists Basics    
● Inserting an item at the tail of a list (linked_list_insertion.c)
● Inserting in the middle of a list
● Inserting at an index in a list
● Deleting the first node in a list (linked_list_deletion.c)

Next lecture: 
● Deleting/freeing all nodes in a list
● Deleting a node from anywhere in a list
● Lists containing other types of data

What did we learn today?
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Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.
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https://forms.office.com/r/pXdtYN4xgE
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Content Related Questions:  
Forum

Admin related Questions email: 
cs1511@unsw.edu.au

Don’t forget to attend Help Sessions
if you need more help

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au
https://cgi.cse.unsw.edu.au/~cs1511/24T3/flask_tutors.cgi/help-sessions

