
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 8 Lecture 1

Linked Lists
Inserting and Deleting

1

COMP1511/COMP1911

Time: Monday 4:30
YouTube Link
Recording will also be available

Assignment Due Date:
Friday Week 10 5pm

Don’t leave it until the last minute!
Help sessions will be very busy the
week before the deadline!!!!!!!!

Assignment 2 Live Stream: CS Dungeon

2

https://youtu.be/k4sJIMRXumQ

COMP1511/COMP1911

Revision Sessions This Week
Wednesday 12pm - 2pm (K14 Physics LG18 Piano)

Friday 2pm - 4pm (Online on Microsoft Teams)

Please sign up for the revision sessions
by following this link
https://buytickets.at/comp1511unsw/1414648

Vote here: COMP1511/COMP1911 – Ed Discussion

3

https://buytickets.at/comp1511unsw/1414648
https://edstem.org/au/courses/19028/discussion/2328582

COMP1511/COMP1911

Last Lecture
● Linked List Basics
● Creating nodes
● Printing a List
● Inserting nodes

○ At beginning

4

COMP1511/COMP1911

Today’s Lecture
● Recap:

○ List basics
○ Print List

● Insert at Tail
● Inserting in the middle of a list

○ Finding the length of the list
● Inserting anywhere in the list
● Linked list deletion of first node (maybe if there is time

otherwise we will leave until thursday)

5

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs 1511/24T3/live/week_8/

Link to Week 8 Live Lecture Code

6

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_8/

COMP1511/COMP1911

The list variable is a pointer to
the first node in the list

Linked List Nodes

7

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

struct node *list;

struct node *list

struct node {

 int data;

 struct node *next;

};

COMP1511/COMP1911

Visualising Linked Lists

8

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x08
head = 0x28

COMP1511/COMP1911

An empty List in C

9

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = NULL

0x08

COMP1511/COMP1911

Creating a List with 1 Node in C

10

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = malloc(sizeof(struct node));

head->data = 21;
head->next = NULL;

21

0x88

head = 0x88

0x08

NULL

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

11

21

0x88

NULL

99

???

0x84

new_node = 0x84

0x16

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 99;
new_node->next = ???;

head = 0x88

0x08

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

12

21

0x88

NULL

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 21;
new_node->next = head;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x88

0x08

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

13

21

0x88

NULL

head = new_node;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x84

0x08

COMP1511/COMP1911

// Creates and returns a new node with given data and
// next pointer. returns NULL if memory allocation fails.
struct node *create_node(int data, struct node *next){

 struct node *new_node = malloc(sizeof(struct node));

 if (new_node == NULL) {

 return NULL;

 }

 new_node->data = data;

 new_node->next = next;

 return new_node;

}

Create Node Function

14

COMP1511/COMP1911

Traversing a List

15

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

COMP1511/COMP1911

Traversing a List

16

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

COMP1511/COMP1911

Traversing a List

17

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

struct node *current = head;

current = 0x28

COMP1511/COMP1911

Traversing a List

18

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along

current = 0x28

COMP1511/COMP1911

Traversing a List

19

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x80

COMP1511/COMP1911

Traversing a List

20

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x60

COMP1511/COMP1911

Traversing a List

21

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x48

COMP1511/COMP1911

Traversing a List

22

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

We should stop now that current == NULL

COMP1511/COMP1911

// Traversing the list and printing the contents (data)

// from each node

void print_list(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 printf("%d ", current->data);

 current = current->next;

 }

 printf("\n");

}

Printing a list

23

COMP1511/COMP1911

Where can I insert in a linked list?
● At the head (what we just did!)
● Between any two nodes that exist (later in this lecture!)
● After the tail as the last node (now!)

To insert a node at the end of the list we need to
● Find the last node in the list
● Connect the last node in the list to the new node

Inserting at the tail (end) of a list

24

COMP1511/COMP1911

If we stop traversing the list when
current == NULL
We go PAST the tail of the list

Finding the Tail of the list

25

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

COMP1511/COMP1911

We want to stop at the last node
How can we tell if we are at the last node?

Finding the Tail of the list

26

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

COMP1511/COMP1911

We want to stop when
current->next == NULL

Finding the Tail of the list

27

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

COMP1511/COMP1911

Then we can link the last node to
the new node

Insert at the Tail of the list

28

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72

COMP1511/COMP1911

current->next = new_node;

Insert at the Tail of the list

29

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

0x72

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72

COMP1511/COMP1911

// What valid input could cause this function to break?

void insert_at_tail(struct node *head, int data){

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

 current = current->next;

 }

 // Connect new node to the tail of the list

 struct node *new_node = create_node(data, NULL);

 current->next = new_node;

 }

Inserting at Tail (with a big bug)

30

COMP1511/COMP1911

It is always important to test your linked list functions with:
● An empty list
● A list with one node
● A list with more than one node

Our function only inserts at the end of the list. If we were writing a
function to insert anywhere into a list we would want to test

● Inserting at the beginning
● Inserting in the middle
● Inserting at the end

Linked List Test Cases

31

COMP1511/COMP1911

If we have an empty list

○ head == NULL;
○ so then current == NULL;
○ so current->next

will be dereferencing a NULL pointer and result in a run time error

Inserting At Tail Code Bug

32

void insert_at_tail(struct node *head, int data){

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

COMP1511/COMP1911

void insert_at_tail(struct node *head, int data){

 struct node *new_node = create_node(data, NULL);

 if (head == NULL) { // Special case for empty list

 head = new_node;

 } else {

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

 current = current->next;

 }

 // Connect new node to the tail of the list

 current->next = new_node;
 }
 }

Inserting at Tail (still with a bug)

33

COMP1511/COMP1911

The code no longer crashes!!!
But we still end up with an empty list when we use the function.
Why?

Inserting At Tail Code Bug

34

 int main(void) {

 struct node *head = NULL;

 insert_at_tail(head, 9);

 // local variable head is in main is still NULL

 return 0;

 }

COMP1511/COMP1911

We need to modify the prototype so it can return the head of the list
and we need to assign that return value to our local variable.

Fixing Inserting at Tail Code

35

struct node *insert_at_tail(struct node *head, int data);

int main(void) {

 struct node *head = NULL;

// local variable head has been updated :)

 head = insert_at_tail(head, 9);

 return 0;

 }

COMP1511/COMP1911

struct node *insert_at_tail(struct node *head, int data){

struct node *new_node = create_node(data, NULL);

 if (head == NULL) { // Special case for empty list

 head = new_node;

 } else {

 struct node *current = head;
 // Find the tail of the list
 while (current->next != NULL) {
 current = current->next;
 }
 // Connect new node to the tail of the list
 current->next = new_node;
 }
 return head;
 }

Inserting at Tail

36

COMP1511/COMP1911

We have looked at 2 special cases
● Inserting at the beginning of a list
● Inserting at the end of a list

Now we want to be able to insert anywhere. Lets try right in the
middle of the list!

Inserting Into a Linked List

37

COMP1511/COMP1911

Inserting in the Middle of the List

38

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

We want to insert a new node at position list_size/2, assuming

positions start at 0. In this case that is position 2

COMP1511/COMP1911

Inserting in the Middle of the List

39

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Use a counter and stop traversing when we get to the node before

the position we want to insert at (size/2 - 1). In this case position 1.

COMP1511/COMP1911

Inserting in the Middle of the List

40

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

struct node *current = head;

int counter = 0;

current = 0x28

COMP1511/COMP1911

Inserting in the Middle of the List

41

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

while (counter < size/2 - 1) {
 current = current->next;
 counter++;
}

COMP1511/COMP1911

Inserting in the Middle of the List

42

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

Now we want to connect our new node. It should come after the

current node, but before current->next

COMP1511/COMP1911

Inserting in the Middle of the List

43

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

9

???

0x5C

new_node = 0x5C

COMP1511/COMP1911

Inserting in the Middle of the List

44

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

9

0x60

0x5C

new_node = 0x5C

COMP1511/COMP1911

Inserting in the Middle of the List

45

13

0x80

17 42

0x28 0x80 0x60

0x5C 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x80

new_node->next = current->next;

current->next = new_node; 9

0x60

0x5C

new_node = 0x5C

COMP1511/COMP1911 46

● What conditions will break this?
○ What happens if it is an empty list?
○ What happens if there is only 1 item in the list?
○ Anything else we should check?

● How can we modify our code to handle any of these situations
that break it?

● How could we modify our code to write a function to insert at
any given index?
○ What extra cases do we need to check now?

Coding: Inserting in the Middle of the List

COMP1511/COMP1911 47

● How could we modify our code to write a function to insert at
any given index?
○ What extra cases do we need to check now?

Coding: Inserting at any position in List

COMP1511/COMP1911

● Remember, you should always consider and make sure your
solution works:

● Inserting into an empty list
● Inserting at the head of the list
● Inserting after the first node if there is only one node
● Inserting somewhere in the middle
● Inserting at the end of the list

 Tip: Draw a diagram!!!! It will allow you to easily see what are some
potential pitfalls

Inserting Into a Linked List Test Cases

48

COMP1511/COMP1911

Deletion

49

COMP1511/COMP1911

Let’s write a function to delete the first node in a linked list.
We need to consider the case when the list is empty
● If it is empty we can’t delete anything
● We just return the head of the list which would be NULL

Deleting the First Node in a Linked List

50

if (head == NULL) {

 return head; //or return NULL;

}

COMP1511/COMP1911

If our list is not empty, we want to make the second node the new head of
the list and free the first node that we want to delete.

Deleting the First Node in a Linked List

51

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

COMP1511/COMP1911

What would be the problem calling free on head first?

Deleting the First Node in a Linked List

52

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

free(head);

COMP1511/COMP1911

We can’t access memory that has been freed. We have lost the rest of the
list

Deleting the First Node in a Linked List

53

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

// This will crash

head = head->next;

COMP1511/COMP1911

What would be the problem with updating head first?

Deleting the First Node in a Linked List

54

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next;

COMP1511/COMP1911

We now have no pointer to the first node so we can’t free it!

Deleting the First Node in a Linked List

55

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(???);

COMP1511/COMP1911

Deleting the First Node in a Linked List

56

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

temporary = 0x28

struct node *temporary = head;

Let’s create a pointer to the first node

COMP1511/COMP1911

Deleting the First Node in a Linked List

57

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

head = head->next;

Now we can update head

temporary = 0x28

COMP1511/COMP1911

Deleting the First Node in a Linked List

58

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x80

free(temporary);

Now we can free the first node

temporary = 0x28

COMP1511/COMP1911

struct node *delete_first_node(struct node *head) {

 if (head == NULL) {

 return head;

 }

 struct node *temporary = head;

 head = head->next;

 free(temporary);

 return head;

}

Deleting the First Node from a List

59

COMP1511/COMP1911 60

● Recap Linked Lists Basics
● Inserting an item at the tail of a list (linked_list_insertion.c)
● Inserting in the middle of a list
● Inserting at an index in a list
● Deleting the first node in a list (linked_list_deletion.c)

Next lecture:
● Deleting/freeing all nodes in a list
● Deleting a node from anywhere in a list
● Lists containing other types of data

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

61

https://forms.office.com/r/pXdtYN4xgE

COMP1511/COMP1911 62

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Don’t forget to attend Help Sessions
if you need more help

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au
https://cgi.cse.unsw.edu.au/~cs1511/24T3/flask_tutors.cgi/help-sessions

