
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 7 Lecture 2

Linked Lists

1

COMP1511/COMP1911

Assignment 2
Out today 1pm

Live stream online Monday 4:30pm

2

COMP1511/COMP1911

Assignment 2: CS Dungeon
● It is an individual assignment
● Aims of the assignment

○ Work with a larger problem and codebase
○ Work with multiple C files
○ Problem solve with linked lists

■ You MUST use linked linked lists. You can’t change the linked lists
into arrays and just do it with arrays!!!!!!!! You will get 0 performance.

○ Practice using strings
○ Being a responsible heap user (free your malloced memory)

● You will be assessed on style! 20% of your mark
● COMP1911 just need to complete stages 1 and 2

3

COMP1511/COMP1911

Time: Monday 4:30
YouTube Link
Recording will also be available

Assignment Due Date:
Friday Week 10 5pm

Don’t leave it until the last minute!
Help sessions will be very busy the
week before the deadline!!!!!!!!

Assignment 2 Live Stream

4

https://youtu.be/k4sJIMRXumQ

COMP1511/COMP1911

Last Lecture
● Pointers basics recap
● Pointers and arrays
● Memory and the stack
● Dynamic Memory, malloc, realloc and the heap

5

COMP1511/COMP1911

Today’s Lecture
The moment you have all been waiting for

Linked Lists - Your first introduction

○ Why are we learning linked lists?
○ What is a linked list?
○ Inserting at the head
○ Traversing a linked list
○ Inserting at the tail

But first a recap of malloc!

6

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_7/

Link to Week 7 Live Lecture Code

7

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_7/

COMP1511/COMP1911

The Heap
● Unlike stack memory, heap memory is

allocated by the programmer
● It won't be deallocated until it is explicitly

freed by the programmer
● You now have the power to control memory

on the heap!
● With power comes heaps of responsibility

8

Low Address

High Address

COMP1511/COMP1911

● malloc is short for memory allocate
● malloc lets us ask for a number of bytes of memory on the heap
● malloc returns

○ a pointer to the chunk of memory or
○ NULL if there is not enough memory left to give us
○ You should always check for NULL in case.

● This allows us to dynamically create memory when we need it that will
last beyond the end of functions and until we say we don’t want it
anymore.

● You need to #include <stdlib.h> to use malloc

The Heap: malloc

9

COMP1511/COMP1911

● multiply the number of elements you need
by the sizeof the type of the element to
work out how many bytes you want malloc
to give you

● malloc will return a pointer to the starting
address of the chunk of memory it
allocated

Using malloc

10

int *numbers = malloc(10 * sizeof(int));

heap

((40 bytes)heap

COMP1511/COMP1911

Note: You can check for memory leaks using dcc with the flag
dcc --leak-check

Putting it all together

11

// create array
int *data = malloc(num_elements *sizeof(int));
// check malloc was successful

// Use the array somehow
// etc etc

// Free array when finished with array
free(data);

COMP1511/COMP1911

struct coordinate {

 int x;

 int y;

};

// return a pointer to a coordinate struct with given x and y

struct coordinate *create_coordinate(int x, int y);

// print coordinate in the format (x, y)

void print_coordinate(struct coordinate *p);

Exercise: return pointer to struct

12

Write the functions and write a main function to
1. Call the first function with x and y 10, -1 and
2. Call the function to print the point.

COMP1511/COMP1911

Linked Lists

13

COMP1511/COMP1911

● An alternative to using an array to store collections of data

○ Arrays are amazing and we won’t be forgetting about them

○ This is just another option!

● Linked Lists are suitable for sequential data:
○ playlists of songs
○ image galleries
○ web browser history

● Why would we want to use a linked list instead of an array?

Linked Lists

14

COMP1511/COMP1911

● Store collections of data in contiguous blocks of memory
● Great for sequential access or random access
● It is easy to insert or delete items at the end

Array Advantages

15

5 3 1 9 6
0 1 2 3 4 5

COMP1511/COMP1911

● Messy and inefficient for inserting or deleting in the middle

● E.g. How can we insert an item at or delete from index 1 in the
array below?

Array Disadvantages

16

5 3 1 9 6
0 1 2 3 4 5

COMP1511/COMP1911

We would need to move all the subsequent data along to

● make room to insert an item at index 1
● remove the gap if we deleted an item at index 1

Array Disadvantages

17

5 3 1 9 6
0 1 2 3 4 5

COMP1511/COMP1911

How can we insert an item into the array below?

● With a static array we can’t!
● With a dynamic array we can use realloc

○ How much bigger do we make it? Just 1 bigger? double the size?

Array Disadvantages

18

5 3 1 9 6 7
0 1 2 3 4 5

COMP1511/COMP1911

● They are dynamic structures
○ They grow and shrink as needed

● They don’t need contiguous memory like an array
● Insert or delete items anywhere in the list

○ by modifying one or two pointers
○ without moving existing data

Linked List Advantages

19

COMP1511/COMP1911

● Not good for random access 🙁
○ You have to traverse from the beginning of the list

● Extra overhead of storing a pointer for each data item

Linked List Disadvantages

20

COMP1511/COMP1911

Arrays in Memory

21

0x20
0x24
0x28 13
0x32 17
0x36 42
0x40 5
0x44
0x48
0x52

● The array name gives us the address of the
beginning of the chunk of memory

● Arrays are stored contiguously which allows us to
use indexes and make random access quick and
easy

int array[] = {13, 17, 42, 5};

COMP1511/COMP1911

● Linked list data is
not contiguous

● It is scattered
throughout
memory.

Arrays vs Linked Lists in Memory

22

0x20
0x24
0x28 13
0x32 17
0x36 42
0x40 5
0x44
0x48
0x52

int array[] = {13, 17, 42, 5};

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

list

COMP1511/COMP1911

Linked Lists in Memory

23

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

● You need a pointer to the first
piece of data in the list

● And for every piece of data you
store in the list you need to
store a link (pointer containing
the address) to the next item in
the list.

● Like a scavenger hunt.

list

COMP1511/COMP1911

Linked Lists in Memory

24

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

● You need a pointer to the first
piece of data in the list

● And for every piece of data you
store in the list you need to
store a link (pointer containing
the address) to the next item in
the list.

● Like a scavenger hunt.

list

COMP1511/COMP1911

Linked Lists in Memory

25

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

● You need a pointer to the first
piece of data in the list

● And for every piece of data you
store in the list you need to
store a link (pointer containing
the address) to the next item in
the list.

● Like a scavenger hunt.

list

COMP1511/COMP1911

Linked Lists in Memory

26

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

● When the value of the pointer
to the next piece of data is
NULL you have reached the
end of the list.

● Congratulations!
You have just traversed your
first linked list.

list

COMP1511/COMP1911

● We say it is sequential as we
have to start at the
beginning of the list and
traverse to access items

● We can’t jump to a particular
item like we can with array
indexes

Linked Lists in Memory

27

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

list

COMP1511/COMP1911

Linked List Nodes

28

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

What type in C would allow us to
store both the

● int data and also the

● address of the next item in the
list?

list

COMP1511/COMP1911

● We can store our data and
a pointer together in a struct.

● We often call these nodes
when working with linked lists

Linked List Nodes

29

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

struct node {

 int data;

 struct node *next;

};

list

COMP1511/COMP1911

The list variable is a pointer to
the first node in the list

Linked List Nodes

30

0x20
0x24
0x28 13
0x32 0x80
0x36
0x40
0x44
0x48 5
0x52 NULL

0x56
0x60 42
0x64 0x48
0x68
0x72
0x76
0x80 17
0x84 0x60
0x88

struct node *list;

struct node *list

struct node {

 int data;

 struct node *next;

};

COMP1511/COMP1911

The list variable is a pointer to
the first node in the list

Linked List Nodes

31

struct node *list;

struct node {

 int data;

 struct node *next;

};

● Each node has some data
○ In this case it is one int

but it could be whatever
type of data you need

○ Later we will see
different types of data in
our linked lists

● Each node has a pointer to
the next node (of the same
data type)

COMP1511/COMP1911

pointer to the first node in the list
(we often use the variable name head instead of list)

Visualising Linked Lists

32

int data

struct
node *
next

int data

struct
node *
next

int data

 NULL

node node node

COMP1511/COMP1911

Visualising Linked Lists

33

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x08
head = 0x28

COMP1511/COMP1911

Let’s write the code to create a linked list with nothing in it.

Creating a linked list

34

Hooray! Who said linked lists were difficult?

head = NULL

0x08

struct node *head = NULL;

We can visualise it as follows

COMP1511/COMP1911

We will be using malloc to create nodes on the heap.
● we want full control to be able to

○ create new nodes whenever we need to
○ free them whenever we are finished with them

Creating a Node

35

Steps needed are:
1. malloc a struct node
2. set the data member in the node
3. set the pointer to the next node

COMP1511/COMP1911

Creating a List with 1 Node in C

36

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = NULL

0x08

COMP1511/COMP1911

Creating a List with 1 Node in C

37

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = malloc(sizeof(struct node));

0x88

head = 0x88

0x08

COMP1511/COMP1911

Creating a List with 1 Node in C

38

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = malloc(sizeof(struct node));

head->data = 21;

21

0x88

head = 0x88

0x08

COMP1511/COMP1911

Creating a List with 1 Node in C

39

struct node {

 int data;

 struct node *next;

};

struct node *head = NULL;

head = malloc(sizeof(struct node));

head->data = 21;
head->next = NULL;

21

0x88

head = 0x88

0x08

NULL

COMP1511/COMP1911

Creating a List with 1 Node in C

40

21

0x88

head = 0x88

0x08

NULL

Now we have a linked list of size 1.

Let’s create another node.

Then we can connect it to the end or the beginning of this list!

COMP1511/COMP1911

Connect 2 nodes: Add new node to the end

41

21

0x88

head = 0x88

0x08

NULL

We will create a new node and link it to the end of this list
The end of the list is often called the tail.

COMP1511/COMP1911

Connect 2 nodes: Add new node to the end

42

21

0x88

head = 0x88

0x08

NULL

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 99;
new_node->next = NULL;

99

NULL

0x84

new_node = 0x84

0x16

COMP1511/COMP1911

Connect 2 nodes: Add new node to the end

43

21

0x88

head = 0x88

0x08

0x84

// Connect(link) the head of the list to the new_node
head->next = new_node;

99

NULL

0x84

new_node = 0x84

0x16

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

44

21

0x88

head = 0x88

0x08

NULL

We will create a new node and link it to the start of this list
The start of the list is often called the head.

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

45

21

0x88

NULL

99

???

0x84

new_node = 0x84

0x16

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 99;
new_node->next = ???;

head = 0x88

0x08

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

46

21

0x88

NULL

struct node *new_node = malloc(sizeof(struct node));

new_node->data = 21;
new_node->next = head;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x88

0x08

COMP1511/COMP1911

Connect 2 nodes: Add new node to the start

47

21

0x88

NULL

head = new_node;

99

0x88

0x84

new_node = 0x84

0x16

head = 0x84

0x08

COMP1511/COMP1911

linked_list_intro.c
Create a list with 3 nodes
Print the contents of the first 3 nodes in the list

Coding Time

48

COMP1511/COMP1911

list_list_functions.c
● How can we put our code to create a new node into a function?
● How could we use that to create a list by adding each node to

head using a loop?
● How would we print the whole list? Even if it had 1000s of

nodes?
● How could we add nodes to the end of the list? Even if it had

1000s of nodes?
● We want a function to free all nodes too. But let’s leave that

until another lecture…

Coding Time

49

COMP1511/COMP1911

// Creates and returns a new node with given data and
// next pointer. returns NULL if memory allocation fails.
struct node *create_node(int data, struct node *next){

 struct node *new_node = malloc(sizeof(struct node));

 if (new_node == NULL) {

 return NULL;

 }

 new_node->data = data;

 new_node->next = next;

 return new_node;

}

Create Node Function

50

COMP1511/COMP1911

// What would the contents of our list be?

int main(void) {

 struct node *head = NULL;

 for(int i = 0; i < 10; i++) {

 struct node *new_node = create_node(i, head);

 head = new_node;

 }

 return 0;

}

Creating a Linked List Inserting at Head

51

COMP1511/COMP1911

Printing a Node

52

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

How could I print the data from the first node in this linked list?

COMP1511/COMP1911

Printing a Node

53

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

How could I print the data from the first node in this linked list?

printf("%d", head->data);

COMP1511/COMP1911

Printing a Linked Lists

54

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

How could I print data from each node in this linked list?

COMP1511/COMP1911

Traversing a list means
● starting at the head of the list
● moving node by node until we get to the end of the list.

We often want to traverse a list, node by node to do things like
● print the data in each node in the list
● count the number of nodes in the list
● search for data in the list

Traversing a list

55

COMP1511/COMP1911

Traversing a List

56

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

COMP1511/COMP1911

Traversing a List

57

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

COMP1511/COMP1911

Traversing a List

58

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Set a pointer to the beginning of the list

struct node *current = head;

current = 0x28

COMP1511/COMP1911

Traversing a List

59

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along

current = 0x28

COMP1511/COMP1911

Traversing a List

60

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x80

COMP1511/COMP1911

Traversing a List

61

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x60

COMP1511/COMP1911

Traversing a List

62

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

Now we need to move current along
current = current->next;

current = 0x48

COMP1511/COMP1911

Traversing a List

63

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

We should stop now that current == NULL

COMP1511/COMP1911

// Traversing the list and printing the contents (data)

// from each node

void print_list(struct node *head) {

 struct node *current = head;

 while (current != NULL) {

 printf("%d ", current->data);

 current = current->next;

 }

 printf("\n");

}

Printing a list

64

COMP1511/COMP1911

Where can I insert in a linked list?
● At the head (what we just did!)
● Between any two nodes that exist (next lecture!)
● After the tail as the last node (now!)

To insert a node at the end of the list we need to
● Find the last node in the list
● Connect the last node in the list to the new node

Inserting at the tail (end) of a list

65

COMP1511/COMP1911

If we stop traversing the list when
current == NULL
We go PAST the tail of the list

Finding the Tail of the list

66

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = NULL

COMP1511/COMP1911

We want to stop at the last node
How can we tell if we are at the last node?

Finding the Tail of the list

67

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

COMP1511/COMP1911

We want to stop when
current->next == NULL

Finding the Tail of the list

68

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

COMP1511/COMP1911

Then we can link the last node to
the new node

Insert at the Tail of the list

69

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

NULL

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72

COMP1511/COMP1911

current->next = new_node;

Insert at the Tail of the list

70

13

0x80

17 42

0x28 0x80 0x60

0x60 0x48

5

0x48

0x72

0x15
head = 0x28

current = 0x48

5

0x72

NULL

new_node = 0x72

COMP1511/COMP1911

// What valid input could cause this function to break?

void insert_at_tail(struct node *head, int data){

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

 current = current->next;

 }

 // Connect new node to the tail of the list

 struct node *new_node = create_node(data, NULL);

 current->next = new_node;

 }

Inserting at Tail (with a big bug)

71

COMP1511/COMP1911

It is always important to test your linked list functions with:
● An empty list
● A list with one node
● A list with more than one node

Our function only inserts at the end of the list. If we were writing a
function to insert anywhere into a list we would want to test

● Inserting at the beginning
● Inserting in the middle
● Inserting at the end

Linked List Test Cases

72

COMP1511/COMP1911

If we have an empty list

○ head == NULL;
○ so then current == NULL;
○ so current->next

will be dereferencing a NULL pointer and result in a run time error

Inserting At Tail Code Bug

73

void insert_at_tail(struct node *head, int data){

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

COMP1511/COMP1911

void insert_at_tail(struct node *head, int data){

 struct node *new_node = create_node(data, NULL);

 if (head == NULL) { // Special case for empty list

 head = new_node;

 } else {

 struct node *current = head;

 // Find the tail of the list

 while (current->next != NULL) {

 current = current->next;

 }

 // Connect new node to the tail of the list

 current->next = new_node;
 }
 }

Inserting at Tail (still with a bug)

74

COMP1511/COMP1911

The code no longer crashes!!!
But we still end up with an empty list when we use the function.
Why?

Inserting At Tail Code Bug

75

 int main(void) {

 struct node *head = NULL;

 insert_at_tail(head, 9);

 // local variable head is in main is still NULL

 return 0;

 }

COMP1511/COMP1911

We need to modify the prototype so it can return the head of the list
and we need to assign that return value to our local variable.

Fixing Inserting at Tail Code

76

struct node *insert_at_tail(struct node *head, int data);

int main(void) {

 struct node *head = NULL;

// local variable head has been updated :)

 head = insert_at_tail(head, 9);

 return 0;

 }

COMP1511/COMP1911

struct node *insert_at_tail(struct node *head, int data){

struct node *new_node = create_node(data, NULL);

 if (head == NULL) { // Special case for empty list

 head = new_node;

 } else {

 struct node *current = head;
 // Find the tail of the list
 while (current->next != NULL) {
 current = current->next;
 }
 // Connect new node to the tail of the list
 current->next = new_node;
 }
 return head;
 }

Inserting at Tail

77

COMP1511/COMP1911 78

● Recap dynamic memory, malloc (malloc_struct.c)
● Linked Lists Intro (linked_list_intro.c)
● Inserting nodes at the start of the list (linked_list_functions.c)
● Traversing a List
● Inserting an item at the tail of a list

Next lecture:
● Inserting an element anywhere in the list!
● Deleting an element
● Lists containing other types of data

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

79

https://forms.office.com/r/nTz8Wkd0vB

COMP1511/COMP1911 80

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Don’t forget to attend Help Sessions

And Revision sessions if needed

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au
https://cgi.cse.unsw.edu.au/~cs1511/24T3/flask_tutors.cgi/help-sessions

