
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 5 Lecture 2

Pointers

COMP1511/COMP1911

Last Lecture
● Was a public holiday - I hope you watched the recording
● Part 1

○ A larger array program (to help with assn1)
● Part 2

○ Strings recap
○ Array of strings and Command Line Arguments (new content)
○ Multi-file Programs (new content).

2

COMP1511/COMP1911

Tuts/labs
● Students in monday classes please book and attend another

class for week 5.
● Link to book here COMP1511 pass key
● Timetable

Public Holiday

3

https://buytickets.at/comp1511unsw/1417658
https://cgi.cse.unsw.edu.au/~cs1511/24T3/timetable

COMP1511/COMP1911

Next Week is Flex Week
There are no lectures or tut/labs next week.

But there is your assn1
and lab 5 to do

So there are:
● help sessions!
● revision sessions!

4

COMP1511/COMP1911

Today’s Lecture
● Pointers!!
● Memory and the stack

Please keep the noise down in the lecture hall so everyone can hear
properly here and online!

5

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_5/

Link to Week 5 Live Lecture Code

6

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_5/

COMP1511/COMP1911

● Memory is effectively a gigantic array of bytes.
● Memory addresses are effectively an index to

this array of bytes.
● They are usually written in hexadecimal
● Real addresses on our system would be 8

bytes and look something like
○ 0x7ffcaa98655c

Memory and Addresses

7

Memory

0xFF4C

0xFF48

0xFF44

0xFF40

COMP1511/COMP1911

● During execution program variables are
stored in memory.

● Each variable is stored at a particular
address.

Memory and Variables

8

 1

Memory

0xFF4C

0xFF48

0xFF44

0xFF40
// In this scenario,

// x is stored at address 0xFF48

int x = 1;

x

COMP1511/COMP1911

● During execution program variables are
stored in memory.

● Each variable is stored at a particular
address.

Memory and Variables

9

 2

Memory

0xFF4C

0xFF48

0xFF44

0xFF40
// In this scenario,

// x is stored at address 0xFF48

int x = 1;

x++;

x

Even though the value in x has changed, the address is the same

COMP1511/COMP1911

● We can get the address of a variable using the
address of operator &

The Address of Operator

10

 2

Memory

0xFF4C

0xFF48

0xFF44

0xFF40

x

int x = 2;

// Print the address of x

// In this scenario it would print 0xFF48

printf("%p", &x);

COMP1511/COMP1911

● We have seen the address of operator before
● We tell scanf the address of our variable so it

can go and put the data into the correct
memory location for us
○ Like giving your address to pizza shop so they

know where to deliver your food to.

Addresses

11

Memory

0xFF4C

0xFF48

0xFF44

0xFF40

int y;

scanf("%d", &y);

y

COMP1511/COMP1911

Is there a way to store an address in a
variable?

12

COMP1511/COMP1911

● Pointers are variables that can store memory addresses
● To declare a pointer variable you specify what type the pointer

points to and use an asterisk to indicate it is a pointer.
● E.g type_pointing_to *pointer_variable_name;

Declaring a Pointer

13

int *number_ptr;

double *real_ptr;

char *my_ptr;

struct person *student_ptr;

COMP1511/COMP1911

● To initialise a pointer, we assign it the address of a variable

Initialising a Pointer

14

int x = 2;

// number_ptr is declared

// and initialised and

// contains the address

// of int variable x

int *x_ptr = &x;

double y = 1.5;

// real_ptr declared

double *real_ptr;

// real_ptr is initialised

// and contains the

// address of double

// variable y

real_ptr = &y;

COMP1511/COMP1911

Declaring and Initialising Pointers

15

 2

99

0xFF48

Memory

0xFF4C

0xFF48

0xFF44

0xFF40

int x = 2;

int y = 99;

// x_ptr now contains address of x

// which in this scenario is

// 0xFF48

int *x_ptr = &x;

0xFF3C

0xFF38

x

y

x_ptr

We say x_ptr references x or
x_ptr points to x

COMP1511/COMP1911

Dereference operator

16

 2

99

0xFF48

Memory

0xFF4C

0xFF48

0xFF44

0xFF40

0xFF3C

0xFF38

x

y

x_ptr

● The dereference operator is *
○ This accesses the value at the address

that the pointer variable holds

int x = 2;

int y = 99;

int *x_ptr = &x;

// *x_ptr will go to address

// 0xFF48 and get the value 2

printf("%d\n", *x_ptr); //prints 2

COMP1511/COMP1911

Indirectly modify a variable

17

 7

99

0xFF48

Memory

0xFF4C

0xFF48

0xFF44

0xFF40

0xFF3C

0xFF38

x

y

x_ptr

● We can use pointers to indirectly modify
variables

int x = 2;

int y = 99;

int *x_ptr = &x;

// goes to address 0XFF48 and

// sets the value to 7

// x now has the value 7!

*x_ptr = 7;

COMP1511/COMP1911

1. Declare a pointer with a *
○ this is where you specify

what type the pointer points
to and get a chunk of
memory for your pointer
variable

Pointers: Putting it all together

18

int x = 42;

// Declare a pointer

int *number_pointer;

// Initialise pointer

number_pointer= &x;

//dereference pointer to get

//42 so z is equal to 43

int z = *number_pointer + 1;

COMP1511/COMP1911

2. Initialise pointer
○ assign the address to the

variable potentially using the
address of operator &

Pointers: Putting it all together

19

int x = 42;

// Declare a pointer

int *number_pointer;

// Initialise pointer

number_pointer= &x;

//dereference pointer to get

//42 so z is equal to 43

int z = *number_pointer + 1;

COMP1511/COMP1911

3. Dereference a pointer
○ using the dereference

operator *
○ go to the address that this

pointer variable is assigned
and access what is at that
address

Pointers: Putting it all together

20

int x = 42;

// Declare a pointer

int *number_pointer;

// Initialise pointer

number_pointer= &x;

//dereference pointer to get

//42 so z is equal to 43

int z = *number_pointer + 1;

COMP1511/COMP1911

pointer_intro.c
pointer_exercise.c

Pointer Coding Demo.

21

COMP1511/COMP1911

int x = -7;
int y = 5;

int *ptr1 = &y;
int *ptr2 = &x;

int z = *ptr1 + y;
*ptr2 = z - 1;
printf("%d %d %d\n", x, y, z);

ptr2 = ptr1;
printf("%d %d\n", *ptr1, *ptr2);

What will this print out?

22

COMP1511/COMP1911

● Sometimes we initialise our pointer variables with a special
value meaning that they don’t point to anything yet.
○ We use the special value NULL to do this

● You will get a run time error if you dereference a NULL pointer

The NULL Pointer

23

int *my_ptr = NULL;

// Dereferencing a NULL

// pointer will cause a

// run time error

printf("%d\n", *my_ptr);

int *my_ptr = NULL;

// Check for NULL first if

// it might be NULL

if (my_ptr != NULL) {

printf("%d\n", *my_ptr);

}

COMP1511/COMP1911

Remember that when we access members of a struct we use a .

Pointers to structs

24

struct point{
 int x;
 int y;
};

int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
}

COMP1511/COMP1911

Accessing pointers to structs with . gets messy.

Pointers to structs

25

struct point{
 int x;
 int y;
};

int main(void) {

 struct point p;

 struct point p_ptr = &p;

 (*p_ptr).x = 10;

 (*p_ptr).y = 9;

}

COMP1511/COMP1911

Instead we can use -> notation

Pointers to structs

26

struct point{
 int x;
 int y;
};

int main(void) {

 struct point p;

 struct point p_ptr = &p;

 (*p_ptr).x = 10;

 (*p_ptr).y = 9;

 // The same but easier

 p_ptr->x = 10;

 p_ptr->y = 9;

}

COMP1511/COMP1911

What is the point of all of this?

27

COMP1511/COMP1911

What will this print?

28

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(x,y);

 printf("%d %d\n", x, y);

 swap(x, y);

 printf("%d %d\n", x, y);

 return 0;

}

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

void swap(int x, int y) {

 int tmp = x;

 x = y;

 y = tmp;

}

COMP1511/COMP1911

More about Memory: The Stack

29

● Stack memory stores data about each
function your program calls.

● When a function is called, data gets
pushed onto the stack such as
○ local variables
○ where to return to when the function

finishes
● Once your function finishes, its data

including variables will automatically be
removed from the stack

Low Address

High Address

COMP1511/COMP1911

More about Memory: The Stack

30

main()

The Stack

int x =

int y =

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

COMP1511/COMP1911

More about Memory: The Stack

31

main()

The Stack

int x = 2

int y =

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

COMP1511/COMP1911

More about Memory: The Stack

32

main()

The Stack

int x = 2

int y = 5

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

COMP1511/COMP1911

More about Memory: The Stack

33

main()

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

The Stack

int x = 2

int y = 5

update()

int x = 2

int y = 5

void update(int x, int y) {

COMP1511/COMP1911

More about Memory: The Stack

34

main()

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

The Stack

int x = 2

int y = 5

update()

int x = 3

int y = 5

void update(int x, int y) {

x = x + 1;

COMP1511/COMP1911

More about Memory: The Stack

35

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

void update(int x, int y) {

x = x + 1;

y = y - 1;
main()

The Stack

int x = 2

int y = 5

update()

int x = 3

int y = 4

COMP1511/COMP1911

More about Memory: The Stack

36

main()

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

 printf("%d %d\n", x, y);

The Stack

int x = 2

int y = 5

void update(int x, int y) {

x = x + 1;

y = y - 1;

}

2 and 5 get printed

COMP1511/COMP1911

More about Memory: The Stack

37

void update(int x, int y) {

 x = x + 1;

 y = y - 1;

}

int main(void) {

 int x = 2;

 int y = 5;

 update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

int main(void) {

 int x = 2;

 int y = 5;

update(x,y);

 printf("%d %d\n", x, y);

 return 0;

}

The Stack
void update(int x, int y) {

x = x + 1;

y = y - 1;

}

COMP1511/COMP1911

● Variables and data are passed by value into functions (note:
arrays are a special case we will discuss separately)
○ The function gets passed copies of the values
○ We can’t change the original values from inside the function
○ The modified copies don’t even exist once the function ends

● Is there anyway around this?

Functions and Pointers

38

COMP1511/COMP1911

● Can we pass in the addresses of variables into our functions
like we do with scanf so we can modify them?
○ Yes! Then the function can go to the memory address and access

and modify the original values
○ Note, we are still passing in copies of the addresses

So now we have a way of letting functions we call modify out local
variables, even if they are not arrays!!

Functions and Pointers

39

COMP1511/COMP1911

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

To do this:
● Our main function would

have to pass in the
addresses of x and y

● Our update function would
need to change to
have pointer parameters
since pointers can store
addresses!

Functions and Pointers

40

void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

COMP1511/COMP1911

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

Functions and Pointers

41

main()

The Stack

int x = 2

int y = 5

update()

int *x =

int *y =

void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

 *x = *x + 1;

 *y = *y - 1;

}

COMP1511/COMP1911

Functions and Pointers

42

main()

The Stack

int x = 3

int y = 5

update()

int *x =

int *y =

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}
 *y = *y - 1;

}

COMP1511/COMP1911

Functions and Pointers

43

main()

The Stack

int x = 3

int y = 4

update()

int *x =

int *y =

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}}

COMP1511/COMP1911

Functions and Pointers

44

main()

The Stack

int x = 3

int y = 4

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

COMP1511/COMP1911

Exercise: Now how can we modify swap?

45

int main(void) {

 int x = 2;

 int y = 5;

 printf("%d %d\n", x, y);

 update(&x,&y);

 printf("%d %d\n", x, y);

 swap(x, y);

 printf("%d %d\n", x, y);

 return 0;

}

void update(int *x, int *y){

 *x = *x + 1;

 *y = *y - 1;

}

void swap(int x, int y) {

 int tmp = x;

 x = y;

 y = tmp;

}

COMP1511/COMP1911

What will this do?
How can we fix it?

Exercise: Pointers to structs

46

void update(struct point p){
 p.x = p.x + 1;
 p.y = p.y + 1;
}

int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
 update(p);
 printf("(%d,%d)\n", p.x, p.y);
}

COMP1511/COMP1911

Pointers to structs

47

struct point update(struct point p){
 p.x = p.x + 1;
 p.y = p.y + 1;
 return p;
}
int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
 p = update(p);
 printf("(%d,%d)\n", p.x, p.y);
}

An option without
pointers could be to
return the updated
point.

COMP1511/COMP1911

Pointers to structs

48

void update(struct point *p){
 p->x = p->x + 1;
 p->y = p->y + 1;
}

int main(void) {
 struct point p;
 p.x = 10;
 p.y = 9;
 update(&p);
 printf("(%d,%d)\n", p.x, p.y);
}

We could also pass
in a pointer and
update the original
copy

COMP1511/COMP1911

● When we pass an array into a function, the address of the start
of the array gets passed in by default!
○ It does not send in a copy of all of the data
○ Just a copy of the address of the first element!
○ This is why we can modify the contents of our array arguments

from within a function!

Functions and Arrays

49

// This WILL modify the contents of the num array
void increment_all(int nums[], int length){
 for (int i = 0; i < length; i++) {
 nums[i] = nums[i] + 1;
 }
}

COMP1511/COMP1911

array_addresses.c
array_arguments.c

Coding time Arrays and Pointers

50

COMP1511/COMP1911

Can we return a pointer from a function?

51

COMP1511/COMP1911

We can return Pointers from Functions

52

int *f(void){

 int x = 3;

 return &x;

}

But we can’t do this? Why? And we can’t do this? Why?

int *f(void){

 int numbers[] = {1, 2, 3};

 return numbers;

}

 We can’t return the address of a local variable

Local variables live on the stack

When the function returns it does not exist any more!

COMP1511/COMP1911

The Heap
● We would like to be able to create arrays

within functions and return them
● We would also like to create arrays whose

sizes are not know until runtime
● Can the heap allow us to do this?

○ Yes!!!!

53

Low Address

High Address

COMP1511/COMP1911

The Heap
● Unlike stack memory, heap memory is

allocated by the programmer
● It won't be deallocated until it is explicitly

freed by the programmer
● You now have the power to control memory

on the heap!
● With power comes heaps of responsibility

54

Low Address

High Address

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

55

https://forms.office.com/r/0SvCZ5LDq2

COMP1511/COMP1911 56

● Pointers
● Pointers to structs with ->
● Pointers and Functions
● Pointers and Arrays
● Memory and the Stack

Have an amazing Flex week.

See you back in week 7 where we will learn about the Heap, malloc
and dynamic arrays and…

What did we learn today?

COMP1511/COMP1911

Linked Lists!

57

COMP1511/COMP1911 58

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

