
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 5 Lecture 1

Lecture Program 2D Arrays of structs
Multi-file Programs

1

COMP1511/COMP1911

Last Week
● 2D Arrays
● Strings
● We did not get up to arrays of strings or command line

arguments

2

COMP1511/COMP1911

Tuts/labs
● Students in monday classes please book and attend another

class for week 5. Link to book here Access code is COMP1511
timetable

● Lab week 4 deadline: Week 5 Tuesday 8pm

Public Holiday

3

https://buytickets.at/comp1511unsw/1417658
https://cgi.cse.unsw.edu.au/~cs1511/24T3/timetable

COMP1511/COMP1911

Today’s Lecture
● Revision: A bigger 2D array of structs with enums program!

○ mud_and_bones.c
○ Putting together concepts needed in assn1
○ Style tips for assn 1

● Recap strings
● Array of strings
● Command line args
● Multi-file Projects

4

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_5/

Link to Week 5 Live Lecture Code

5

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_5/

COMP1511/COMP1911

Problem Time
Put together the important concepts

needed for assn1

6

COMP1511/COMP1911

We have the following “game”.
● A dog (the player) is moving around on a map
● The locations on the map contain either grass, mud or water.
● They may also contain a bone.
● The dog can move around the map to collect bones
● However if he was in a location with mud on the previous turn

he will spread the mud to the grass if he lands on grass
● If he was in a location with water on the previous turn he will

wash the mud off the grass if he lands on mud

Problem Time: Mud and Bones

7

COMP1511/COMP1911

There is no winning in this “game”
The player presses Ctrl^D to end the game!

Warning: This is not how mud, water and grass works in real life…
don’t try this with your own dog.

Problem Time: Mud and Bones

8

COMP1511/COMP1911

Important types and constants given to you for this code

Problem Time: Mud and Bones

9

#define MAP_ROWS 8

#define MAP_COLUMNS 8

enum ground_type {

 GRASS,

 WATER,

 MUD

};

enum item_type {

 EMPTY,

 BONE

};

struct location {

enum item_type item;

enum ground_type ground;

};

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

10

struct location map[MAP_ROWS][MAP_COLUMNS];

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

11

struct location map[MAP_ROWS][MAP_COLUMNS];

EMPTY
GRASS

BONE
MUD

EMPTY
GRASS

EMPTY
WATER

BONE
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

Col 0 Col 1 Col 2

Row 0

Row 1

Row 2

Row 3

If we zoom into a
section of the map, we
can see each one is a
struct location with an
item type and a ground
type

COMP1511/COMP1911

The Map: 8x8 2D array of struct location

12

struct location map[MAP_ROWS][MAP_COLUMNS];

EMPTY
GRASS

BONE
MUD

EMPTY
GRASS

EMPTY
WATER

BONE
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

EMPTY
GRASS

Col 0 Col 1 Col 2

Row 0

Row 1

Row 2

In this example

map[0][1].item
has the value BONE

map[0][1].ground has
the value MUD

COMP1511/COMP1911

Provided Function Prototypes

Problem Time: Mud and Bones

13

void initialise_map(struct location map[MAP_ROWS][MAP_COLUMNS]);

void print_map(

 struct location map[MAP_ROWS][MAP_COLUMNS],

 int dog_row,

 int dog_col,

 int num_bones,

 int mud_spread

);

COMP1511/COMP1911

● Create a map variable
● Call initialise on the map
● Call print_board, passing in ILLEGAL_INDEX for dog_row and

dog_col and 0 for bone_count and mud_count
● Initialise data:

○ scan in co-ordinates from the user and set the dog’s
starting position. If illegal, set to (0, 0)

○ initialise bone_count and mud_count to 0
○ Print the board!

Mud and Bones Stage 1

14

COMP1511/COMP1911

In a loop that ends with Ctrl-D (there is no winning)
● Allow the user to enter ‘w’ ‘a’ ‘s’ ‘d’ to move the dog around

the map (other inputs are ignored). We will not implement
checking bounds of array. So our program may crash :(

● Update the changes in ground_type based on the dog’s
movement through water and mud

● Increment the bone count and remove bones from the map
once found. Print out “Yum!”

● Print the map after each valid move

Mud and Bones Stage 2

15

COMP1511/COMP1911

Follow the style guide, but some simple things to watch out for:
● Functions
● #defines constants for magic numbers including ‘w’ etc
● Comments
● line length

Get feedback from
● style checker
● checking the style guide
● asking your tutor or a help session tutor to give feedback

Assignment 1 Style Tips

16

COMP1511/COMP1911

Feedback Please! Week 5 Part 1
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

17

https://forms.office.com/r/BKnXfy15i7

COMP1511/COMP1911

● Strings are a collection of characters
● In C a string is

○ an array of char
○ that ends with a special character ‘\0’ (null terminator)

Strings recap: What are they?

18

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

COMP1511/COMP1911

Strings: How do we initialise them?

19

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

// the painful way

char word[] = {'h','e','l','l','o','\0'};

// the more convenient way which does the same thing

char word[] = "hello";

COMP1511/COMP1911

Printing Strings

20

char char char char char char

0 1 2 3 4 5

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char word[] = "hello";
int i = 0;
while (word[i] != '\0') {
 printf("%c", word[i]);
 i++;
}

// the easy way

// using printf with %s

char word[] = "hello";

printf("%s", word);

COMP1511/COMP1911

char array[MAX_LENGTH];

// Read in the string into array of length MAX_LENGTH

// from standard input - which by default is the terminal

fgets(array, MAX_LENGTH, stdin);

Strings: How do we read them in?

21

char char char char char char

0 1 2 3 4 5

‘h’ ‘i’ ‘\n’ ‘\0’ ? ?

Assume MAX_LENGTH is 6 and the user types in hi then presses
enter we would get an array like:

COMP1511/COMP1911

Some other useful functions for strings:

string.h library functions

22

strlen() gives us the length of the string excluding the '\0'

strncpy() copy the contents of one string to another

strcmp() compare two strings

strncat() append one string to the end of another (concatenate)

strchr() find the first occurance of a character in a string

Find more here: https://www.tutorialspoint.com/c_standard_library/string_h.htm

https://www.tutorialspoint.com/c_standard_library/string_h.htm

COMP1511/COMP1911

String Functions: strncpy strlen

23

// Declare an array to store a string

char puppy[MAX_LENGTH] = "Boots";

// Copy the string "Finn" into the word array

// strncpy will truncate the string if it is too long

// this is safer than using strcpy which can cause buffer overflow

strncpy(puppy, "Finn", MAX_LENGTH - 1);

puppy[MAX_LENGTH - 1] = '\0';

printf("%s\n", puppy);

// Find string length. It does NOT include '\0' in the length

int len = strlen(puppy);

printf("%s has length %d\n", puppy, len);

COMP1511/COMP1911

Coding Time: strings recap
● Recap strings

○ basics.c
○ full_name.c (not covered in lecture but code example provided)

24

COMP1511/COMP1911

// This array can store 3 strings.

// Each string has max size 5, including ‘\0’

char words[3][5] = {"hat", "cake", "tea"};

● You can have an array of strings!
● You can also think of it as a 2D

array of characters

Array of Strings

25

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”

COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 1 index gives us a row/string

// This would print “cake”

printf("%s\n", words[1]);

● You can have an array of strings!
● You can also think of it as a 2D

array of characters

Array of Strings

26

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”

COMP1511/COMP1911

char words[3][5] = {"hat", "cake", "tea"};

// Using 2 indexes gives us a character

// This would print the ‘e’ from “tea”

printf("%c\n",words[2][1]);

● You can have an array of strings!
● You can also think of it as a 2D

array of characters

Array of Strings

27

col 0

row 0 ‘h’

‘c’

‘t’

col 1

‘a’

‘a’

‘e’

col 2

‘t’

‘k’

‘a’

col 3

‘\0’
’

‘e’

col 4

‘\0’row 1

row 2 ‘\0’
0

“hat”
1

“cake”
2

“tea”

COMP1511/COMP1911

array_of_strings.c
● initialise data
● fgets data
● print out all strings

Coding Time Array of Strings

28

COMP1511/COMP1911

What are Command Line Arguments?

29

COMP1511/COMP1911

● So far, we have only given input to our program after we have
started running that program (using scanf() or fgets())

● Our main function prototype has always been
int main(void);

● Command line arguments allow us to give inputs to our
program at the time that we start running it! E.g.

Command Line Arguments

30

$ dcc prog.c -o prog
$./prog argument1 argument2 argument3 argument4
$./prog 123 hello

COMP1511/COMP1911

● To use command line arguments you need to change your main
function prototype to
int main(int argc, char *argv[])

● argc
○ a counter for how many command line arguments you have

(including the program name)
● char *argv[]

○ an array of the different command line arguments
○ each command line argument is a string (an array of char)

Command Line Arguments

31

COMP1511/COMP1911

● If we ran our program as follows:

Command Line Arguments

32

$./prog 123 dog “hello world”

● argc would be equal to 4
● argv would be an array of strings we can visualise as follows:

0 1 2

“./prog” “123” “dog” “hello world”

3

COMP1511/COMP1911

int main(int argc, char *argv[]) {
 printf("There are %d command line arguments\n", argc);

 // argv[0] is always the program name
 printf("This program name is %s\n", argv[0]);

 // print out all arguments in the argv array
 for (int i = 0; i < argc; i++) {
 printf("Argument at index %d is %s\n", i, argv[i]);
 }
 return 0;
}

Command Line Arguments

33

COMP1511/COMP1911

$ dcc -o command_line_args command_line_args.c
$./command_line_args 123 dog "Hello World" COMP1511
This program has 5 command line arguments
This program name is ./command_line_args
Argument at index 0 is ./command_line_args
Argument at index 1 is 123
Argument at index 2 is dog
Argument at index 3 is Hello World
Argument at index 4 is COMP1511

Command Line Arguments

34

COMP1511/COMP1911

● You may want to use your command line arguments to perform
calculations, but they are strings!

● There is a function that converts strings to integers:
○ atoi() in the standard library: <stdlib.h>
○ E.g. int x = atoi("952")

■ Would give us a value of 952 stored in x

Converting Strings to Integers: atoi

35

COMP1511/COMP1911

Converting Strings to Integers: atoi

36

int main(int argc, char *argv[]) {

 int sum = 0;

 for (int i = 1; i < argc; i++) {

 sum = sum + atoi(argv[i]);

 }

 printf("%d is the sum of all command line args\n", sum);

 return 0;

}

COMP1511/COMP1911

● command_line_args.c
● atoi_demo.c

Command Line Arguments

37

COMP1511/COMP1911

What are Multi-File Projects?

38

COMP1511/COMP1911

● Big programs are often spread out over multiple files. There are
a number of benefits to this:
○ Improves readability (reduces length of program)
○ You can separate code by subject (modularity)
○ Modules can be written and tested separately

● So far we have already been using the multi-file capability.
○ Every time we #include, we are actually borrowing code from

other files
○ We have been only including C standard libraries

Multi-File Projects

39

COMP1511/COMP1911

● You can also #include your own! (FUN!)
● This allows us to join projects together
● It also allows multiple people to work together on projects out

in the real world
● We will also often produce code that we can then use again in

other projects
○ that is all that the C standard libraries are - functions that are

useful in multiple instances)
● Assignment 2 will be a multi-file assignment.

○ Assignment 1 is not. Do NOT split it up into multiple files

Multi-File Projects

40

COMP1511/COMP1911

● In a multi file project we might have:
○ (multiple) header files - like the .h files that you have been using

from standard libraries already
○ (multiple) implementation files - these are .c files, they implement

what is in the corresponding header file.
● a .c file with a main function - this is the entry to our program,

we try and have as little code here as possible

Multi-File Projects

41

COMP1511/COMP1911

● .h files typically contain:
○ function prototypes for the functions that will be implemented in

the implementation (.c) file
○ comments that describe how the functions will be used
○ #defines and enums
○ they do not contain executable statements

● .h files give
○ the programmer all the information they need to use the code (a

bit like documentation)
○ the compiler the information it needs to do type/syntax checking

on the related .c files you #include it in

Header (.h) Files

42

COMP1511/COMP1911

● There will be exactly one .c file with a main function

● Other .c files typically contain:
○ Implementations of the functions that you have defined in the

corresponding header files
● .c files #include relevant .h files

○ You use "" instead of <> to include your own files E.g.
○ #include "array_utilities.h"

Implementation (.c) Files

43

COMP1511/COMP1911

Suppose we have three files:
● header file array_utilities.h
● implementation file array_utilities.c

○ #include "array_utilities.h"
● file with main function program.c

○ #include "array_utilities.h"

Example: Multi-File C Program

44

COMP1511/COMP1911

● You do not compile the .h files.
○ They should already be included in the relevant .c files

● You compile .c files together into 1 executable
○ Exactly one of the .c files should have a main function

● E.g.
$ dcc -o program program.c utilities.c
$./program

Compiling Multi-File Programs

45

COMP1511/COMP1911

Feedback Please! Week 5 Part 2
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

46

https://forms.office.com/r/XasASvSSdY

COMP1511/COMP1911 47

● 2D array of structs with enums coding example
○ mud_and_bones.c

● String recap
○ basics.c (full_name.c code example provided)

● Arrays of strings
○ arrays_of_strings.c

● Command Line Arguments
○ command_line_args.c atoi_demo.c

● Multi-file Programs
○ program.c array_utilities.h array_utilities.c

What did we learn today?

COMP1511/COMP1911 48

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

