
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 4 Lecture 1

Arrays of structs
2D Arrays

1

COMP1511/COMP1911

Last Week
● Functions
● Style
● Arrays

2

COMP1511/COMP1911

Last day to drop Teaching Period Three (T3) courses without
financial liability.

Census Date this sunday

3

COMP1511/COMP1911

● Assignment 1 will be released after this lecture at 1pm
● It is an individual assignment
● Aims of the assignment

○ Apply arrays and two-dimensional arrays to problem solving
○ Apply the use of functions in code
○ Practice skills in debugging code, and skills in patience as you

search for your missing semicolons
○ Apply good style

■ You will be assessed on style! 20% of your mark

Assignment 1 : CS Moonlander

4

COMP1511/COMP1911

● 4 stages, each stage ramps up with difficulty
○ just like the lab exercises
○ suggest going through the stages in order

● Stage 4 is similar level of difficulty as 3 dot lab exercises
○ You can get a great mark in the assignment without doing stage 4
○ Stage 4 is a challenge and to discriminate between HDs

Assignment 1 : Stages

5

COMP1511/COMP1911

Time: Tuesday 12:30pm
Place: Assn 1 Overview (youtube.com)

Recording will also be available

Assignment Due Date: Monday
Week 7 5pm!
Don’t leave it until the last minute!
Help sessions will be very busy the
week before the deadline!!!!!!!!

Assignment 1 Live Stream

6

https://www.youtube.com/watch?v=Njqc4kwxr5c

COMP1511/COMP1911

Get help from the right places

○ COMP1511/1911 staff in
lectures, tuts, labs

○ Forum, Help Sessions, Revision
Sessions

● Do not get ‘help’ or submit code
from external sources like:
○ ChatGPT, external tutors, other

people’s code etc

Plagiarism

7

COMP1511/COMP1911

Plagiarism is taken very seriously
We run plagiarism checking on all submissions
For full details read the course outline and also refer to

student.unsw.edu.au/plagiarism

Plagiarism

8

https://student.unsw.edu.au/plagiarism

COMP1511/COMP1911

● Topics: Vote now for the topics!
● Week 4:

○ Mon 9-11am Kora lab in person: how was it?

○ Wed 12-2pm and Fri 12-2pm Online
● You can sign up for the revision sessions by following the link

Select tickets – COMP1511 Revision Sessions – UNSW or Online
(tickettailor.com)

● You can find this link and the voting on this forum announcement

Revision Sessions (Not recorded)

9

https://www.tickettailor.com/events/comp1511unsw/1410330
https://www.tickettailor.com/events/comp1511unsw/1410330
https://edstem.org/au/courses/19028/discussion/2251744

COMP1511/COMP1911

Today’s Lecture
● Recap arrays and functions with arrays
● Array of structs
● 2D Arrays

10

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_4/

Link to Week 4 Live Lecture Code

11

Disclaimer:

Sometimes live lecture code is not
cleaned up and polished!!! It may have
some things that are not 100% perfect
style.

I also sometimes have extra comments
explaining how C works that would not
be needed usually.

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_4/

COMP1511/COMP1911

So let's say we have this declared and initialised:

This is what it looks like visually:

Note: The array holds 7 elements. Indexes start at 0

Visualising an Array

12

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0
○ Trying to access an index that does not exist, will result in an error

chocolate_eating[2] would access the third element

Accessing Elements in an Array

13

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

Traversing an Array

14

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

Start at index 0
chocolate_eating[0]

COMP1511/COMP1911

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

Traversing an Array

15

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[1]

COMP1511/COMP1911

Traversing an Array

16

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[2]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

17

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[3]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

18

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[4]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

19

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[5]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

20

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[6]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

● Read in and print array with functions
● Write a function to print out odd numbers in the array as a

function
● Find the maximum in an array as a function
● What test cases should we choose?

Array Coding Exercises

21

COMP1511/COMP1911

Can you have an array of structs?

22

COMP1511/COMP1911

Arrays of structs

23

struct

0 1 2 3 4

1

struct coordinate {

 int x;

 int y;

};

// Declare an array of

// type struct coordinate

// of size 5

struct coordinate map[5];

map[0].x = 3;

map[0].y = 1;

3

struct struct struct struct

COMP1511/COMP1911

● coordinate_array.c
○ Read in data for an array of coordinates
○ Print out the array of coordinates
○ Move all coordinates by a constant value in the x direction

Code Demo of Array of structs

24

COMP1511/COMP1911

2D Arrays
(Arrays of Arrays)

25

COMP1511/COMP1911

2D Arrays: Declaring

26

int number_grid[3][5];

type of data

stored in array

name of the array Dimension 1:

number of rows

● This declares a 2D array (an array of arrays) called
number_grid that can store 3 rows with 5 columns of ints in
each row

Dimension 2:

number of cols

COMP1511/COMP1911

2D Arrays: Accessing Indexes

27

// A 2D array with 3 rows and 5 columns of int

int number_grid[3][5];

// To access an element you need to give 2 indexes

number_grid[2][3] = 42;

col 0

row 0

col 1 col 2 col 3 col 4

row 1

row 2 42

COMP1511/COMP1911

2D Arrays: Declaring and Initialising

28

// A 2D array with 3 rows and 5 columns of int

int number_grid[3][5] = {{2, 4, 6, 8, 10},

 {1, 2, 3, 4, 5},

 {9, 7, 0, 8, -1}};

col 0

row 0 2

1

9

col 1

4

2

7

col 2

6

3

0

col 3

8

4

col 4

10

5

-1

row 1

row 2 8

COMP1511/COMP1911

Think back to the code we wrote with nested while loops that
printed out a grid of numbers.

2D Arrays: Nested While Loops

29

int row = 0;

while (row < SIZE) {

 int col = 0;

 while (col < SIZE) {

 printf("%d ", col);

 col++;

 }

 printf("\n");

 row++;

}

COMP1511/COMP1911

2D Arrays: Traversal

30

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 0

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

31

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 1

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

32

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 2

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

33

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 0
Inner loop: col = 3

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

34

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 0

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

35

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 1

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

36

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 2

col 3

1

4

5 0 6 3row 2

COMP1511/COMP1911

2D Arrays: Traversal

37

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 1
Inner loop: col = 3

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

38

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 0

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

39

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 1

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

40

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 2

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D Arrays: Traversal

41

// Assume ROWS is 3 and COLS is 4
int array[ROWS][COLS] = {{1, 2, 3, 1},

 {9, 8, 7, 4},
 {5, 0, 6, 3}};

int row = 0;
while (row < ROWS) {
 int col = 0;
 while (col < COLS) {
 printf("%d ", array[row][col]);
 col++;
 }
 printf("\n");
 row++;
}

col 0

row 0 1

9

col 1

2

8

col 2

3

7row 1

Outer loop: row = 2
Inner loop: col = 3

col 3

1

5 0 6 3row 2

4

COMP1511/COMP1911

2D_array_numbers.c
print array
read in data
print sum of each row
print sum of each column

diagonals.c
sum diagonal starting at top left
sum diagonal starting at top right

Demo

42

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

43

https://forms.office.com/r/ueCvbJmQCi

COMP1511/COMP1911 44

● Assignment 1 released
● Recap arrays (numbers_functions.c)
● Arrays of structs (struct_array.c)
● 2D Arrays (2D_array.c, diagonals.c)

What did we learn today?

COMP1511/COMP1911 45

● strings
○ We will finally be able to store text in our variables!!!!!

Next Lecture

COMP1511/COMP1911 46

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

