
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Week 3 Lecture 2

Arrays

1

COMP1511/COMP1911

Last Lecture
● Enums
● Functions - what/how/why?
● Talked about good style/bad style

2

COMP1511/COMP1911

Today’s Lecture
● Quick Function Recap
● Handy Shorthand
● Arrays
● Look at some functions with arrays!

Reminder to myself: Repeat questions from students in the lecture
so students at home can hear them.
Also sorry I have forgotten to do that at times!!!

3

COMP1511/COMP1911

● Help Sessions
● Revision Sessions starting next week
● Assignment out next week Monday 1pm

○ We will then run a special live stream event that will go through
the assignment with you in a lot more detail Tuesday next week

○ Material from weeks 1-4 lectures are needed to complete it
○ We will do a larger coding example in Week 5 Lecture 1

(pre-recorded video due to public holiday)
● Don’t forget to make sure you check your UNSW email and

forum announcements

This week

4

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_3/

Link to Week 3 Live Lecture Code

5

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_3/

COMP1511/COMP1911

Functions Recap

6

COMP1511/COMP1911

What?
● A function is a block of code that performs a specific task

Why?
● Improve readability of the code
● Improve reusability of the code
● Debugging is easier (you can narrow down which function is

causing issues)
● Reduces size of code (you can reuse the functions as needed,

wherever needed)

Functions Recap : What and Why?

7

COMP1511/COMP1911

● Local variables are created when the function called and
destroyed when function returns

● A function’s variables are not accessible outside the function

Functions and Local Variables

8

double add_numbers(double x, double y) {

 // sum is a local variable

 double sum;

 sum = x + y;

 return sum;

}

COMP1511/COMP1911

● Variables declared outside a function have global scope
○ Do NOT use these!

Global Variables

9

// result is a global variable BAD DO NOT USE IN COMP1511

int result;

int main(void) {

 // answer is a local variable GOOD

 int answer;

 return 0;

}

COMP1511/COMP1911

● Primitive types such as int, char, double and also enum and
structs are passed by value
○ A copy of the value of the variable is passed into the function

E.g. This increment function is just modifying its own copy of x

Passing by Value

10

void increment(int x) {

 // modifies the

 // local copy of x

 x = x + 1;

}

COMP1511/COMP1911

Passing by Value

11

int main(void) {

 int x = 10;

 // passes the value 10

 // into the function

 increment(x);

 // x will still be 10

 printf("Main: %d\n", x);

 return 0;
}

void increment(int x) {

 // modifies the

 // local copy of x

 x = x + 1;

 printf("Inc: %d\n", x);

}

1110

COMP1511/COMP1911

One way to check that scanf()
successfully scanned data is
to do something like :

Using Functions in Conditions

12

You can call functions inside
your if statements or your
while loops like this:

int scanf_return;

scanf_return = scanf("%d", &n);

while (scanf_return == 1) {

 ...

 scanf_return = scanf("%d", &n);

}

while (scanf("%d", &n) == 1) {

 ...

}

Note: You can’t do this with functions
that have void return types

COMP1511/COMP1911

Some handy shorthand!!

13

COMP1511/COMP1911

Increment and Decrement

14

// Increment count by 1

count = count + 1;

count++;

// Decrement count by 1

count = count - 1;

count--;

// Increment count by 5

count = count + 5;

count += 5;

// Decrement count by 5

count = count - 5;

count -= 5;

COMP1511/COMP1911

● Very similar to while loops!
● You can do everything you

need with a while loop
● for loops are really just a

short hand for while loops in C
● for loops are very handy for

loops when you know the
number of iterations you need!
○ counting loops

for loops

15

COMP1511/COMP1911

For loop structure

16

for (int count = 0; count < 10; count++) {

 //Do something

}

initialisation:

Executed before

the loop begins

expression:

Evaluated before

each iteration.

exits loop when

falsee

increment:

Executed at the

end of each

iteration

COMP1511/COMP1911

These two loops do exactly the same thing!

while loop vs for loop

17

int i = 0;

while (i < 10) {

 printf("%d\n", i);

 i++;

}

for (int i = 0; i < 10; i++) {

 printf("%d\n", i);

}

COMP1511/COMP1911

Arrays

18

COMP1511/COMP1911

What if you wanted to store many
related values of the same type?

19

COMP1511/COMP1911

Number of Chocolates Eaten

20

int day_1 = 2;

int day_2 = 3;

int day_3 = 3;

int day_4 = 5;

int day_5 = 7;

int day_6 = 1;

int day_7 = 3;

// Any day with 3 or more is too much!

if (day_1 >= 3){

 printf("Too many chocolates\n");

}

if (day_2 >= 3) {...

Does this seem repetitive? What if I tracked a year’s worth??!!

COMP1511/COMP1911

● A data structure is a way of organizing and storing data so that
it can be accessed and used efficiently

● In this course we will learn about two pretty cool data
structures:
○ Arrays (NOW!)
○ Linked Lists (after flexibility week)

● There are other data structures that you will learn about in
further computing courses

● Choosing the right data structure depends on what the problem
is and what you are trying to achieve.

Data Structures

21

COMP1511/COMP1911

● A collection of variables all of the same type (homogenous)
○ Think about how this is very different to a struct

● A contiguous data structure
○ All data in an array is stored in consecutive memory locations

● A random access data structure
○ We can access any data in the collection directly without having to

scan through other data elements
● An indexed structure

○ We just have one variable identifier for the whole collection of data
○ We can uses indexes to access specific pieces of data

Arrays!

22

COMP1511/COMP1911

Declaring an Array

23

int chocolate_eating[7];

type of data

stored in array

name of the array size: number of

items in the array

● This declares an array named chocolate_eating, that can store 7
integers

COMP1511/COMP1911

Declaring and Initialising an Array

24

// This declares an array named chocolate_eating,

// that can store 7 integers and initialises

// their values to 4, 2, 5, 2 and so on.

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

// This would declare the array and

// initialise all values to 0

int chocolate_eating[7] = {};

COMP1511/COMP1911

Declaring and Initialising an Array

25

// This is illegal and does not compile

// You can only use this initialisation syntax

// when you declare the array

// NOT later

int chocolate_eating[7];

chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

// This is the correct way all in one line

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

COMP1511/COMP1911

So let's say we have this declared and initialised:

This is what it looks like visually:

Note: The array holds 7 elements. Indexes start at 0

Visualising an Array

26

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0
○ Trying to access an index that does not exist, will result in an error

chocolate_eating[2] would access the third element

Accessing Elements in an Array

27

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can access any element of the array by using its index
○ Indexes start from 0
○ Trying to access an index that does not exist, will result in an error

chocolate_eating[7] would cause a run time error

Accessing Elements in an Array

28

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

COMP1511/COMP1911

● You can't printf() a whole array
○ but you can print individual elements

● You can't scanf() a whole array at once
○ but you can can scanf() individual elements

● You can’t assign a whole array to another array variable
○ but you can create an array and copy the individual elements

A closer look at arrays

29

int a[7] = {4, 2, 5, 2, 0, 3, 1};

int b[7] = a; // You can’t do this!

COMP1511/COMP1911

Does this look repetitive?

Printing elements in an array

30

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
printf("%d ", chocolate_eating[0]);
printf("%d ", chocolate_eating[1]);

printf("%d ", chocolate_eating[2]);

printf("%d ", chocolate_eating[3]);

printf("%d ", chocolate_eating[4]);

printf("%d ", chocolate_eating[5]);

printf("%d ", chocolate_eating[6]);

How could we do this in a better way?

COMP1511/COMP1911

Traversing an Array

31

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

Start at index 0
chocolate_eating[0]

COMP1511/COMP1911

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

Traversing an Array

32

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[1]

COMP1511/COMP1911

Traversing an Array

33

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[2]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

34

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[3]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

35

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[4]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

36

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[5]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Traversing an Array

37

int int int int int int int

0 1 2 3 4 5 6

4 2 5 2 0 3 1

Increment index by 1
chocolate_eating[6]

int chocolate_eating[7] = {4, 2, 5, 2, 0, 3, 1};
int i = 0;
while (i < 7) {
 printf("%d ", chocolate_eating[i]);
 i++;
}

COMP1511/COMP1911

Quick Break

38

COMP1511/COMP1911

 Demo arrays!
simple_array.c
numbers.c

print array, (while loop and for loop)
sum,
average,
divisible by 4,
multiply by 2,
scan in numbers

numbers_functions.c

39

COMP1511/COMP1911

Arrays and Functions
● We can pass arrays into functions!
● The function needs a way of knowing the size of the array

40

#define SIZE 5

// Must pass in array of int of size SIZE (in this case 5)

void print_array(int array[SIZE]);

// Can pass in array of int of any size

void print_array(int size, int array[size]);

COMP1511/COMP1911

Arrays and Functions

41

void print_array(int size, int array[size]);

int main(void) {
int marks[] = {9, 8, 10, 2, 7};

 int ages[] = {21, 42, 11};

 print_array(5, marks);
 print_array(3, ages);
 return 0;
}
void print_array(int size, int array[size]) {
 for (int i = 0; i < size; i++) {
 printf("%d ", array[i]);
 }
}

COMP1511/COMP1911

Arrays and Functions

42

● Functions do not get a copy of all the array values passed into
them.

● They can access the original array from the calling function
● This means they can modify the values directly from the

function
● More about this in future weeks!

COMP1511/COMP1911

Arrays and Functions

● We can pass an
array into a
function and
initialise all the
values like this!!

int main(void) {

 int marks[SIZE];

 scan_marks(SIZE, marks);

 print_marks(SIZE, marks);

 return 0;

}

void scan_marks(int size, int array[size]) {

 for (int i = 0; i < size; i++) {

 scanf("%d ", &array[i]);

 }

}

43

COMP1511/COMP1911

Arrays and Functions
● Trying to return an array

from a function by doing
something like this looks
ok but fails spectacularly!

● We will explain this in
more detail later in the
course

44

// You can’t return an array like

// this from a function

int[] scan_marks(void) {

 int array[SIZE];

 for (int i = 0; i < SIZE; i++) {

 scanf("%d ", &array[i]);

 }

 return array;

}

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

45

https://forms.office.com/r/Us5cJ3hhaE

COMP1511/COMP1911 46

● Functions recap (memory_scope.c pass_by_value.c
scanf_loop.c)

● Arrays (simple_array.c numbers.c)
● Arrays with Functions (numbers_functions.c)

What did we learn today?

COMP1511/COMP1911 47

● Lectures:
○ 2D arrays
○ strings

● Assignment 1 will be released next week on Monday after
lecture
○ Material covered in lectures next week will be important
○ Live streaming of assignment on tuesday next week
○ Coding lecture recording for Monday Week 5 public holiday will be

very helpful for the assignment as well

Next Week

COMP1511/COMP1911 48

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

