
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Functions and Style

Week 3 Lecture 1

COMP1511/COMP1911

Last Week
● if statements
● scanf returns!
● while loops
● nested while loops
● structs

2

COMP1511/COMP1911

This Week
● Lab 2 due tonight 8pm.
● Lab 3 due next week
● Help Session Schedule
● Assignment 1 out early next week!

3

COMP1511/COMP1911

Today’s Lecture
● Recap of nested while loops, structs,
● enums
● structs and enums
● Functions
● Style

Most students start to find things are getting hard this week
Be patient and keep practicing.

4

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_3/

Link to Week 3 Live Lecture Code

5

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_3/

COMP1511/COMP1911

A Brief Recap

6

● Nested While Loops
pattern.c
clock.c (solution for you to look at once you have tried to
implement it yourself)

● Structs
struct_student.c
struct_points.c

COMP1511/COMP1911

● Data types that allow you to assign names to integer constants
to make it easier to read and maintain your code
○ By default the enumerated constants will have int values 0, 1, 2, …
○ Note you can’t have two enums with the same constant names

Enumerations

7

// Example of the syntax used to define an enum

enum enum_name {STATE0, STATE1, STATE2, ...};

// E.g. define an enum for day of the week
enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

// E.g. define an enum with specified int values
enum status_code {OK = 200, NOT_FOUND = 404};

COMP1511/COMP1911

enum code example

8

// Define an enum with days of the week

// make sure it is outside and before the main function

// MON will have value 0, TUE 1, WED 2, etc

enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

int main (void) {

 enum weekdays day;

 day = SAT;

 // This will print out 5

 printf("The day number is %d\n", day);

 return 0;

}

COMP1511/COMP1911

● enums are useful when we want to define a specific fixed set of
constants

● The advantages of using enums over #defines
○ Enumerations are automatically assigned values, which makes

the code easier to read
■ Think of the case where you have a large number of related

constants
● #define are useful for other contexts such as constants that are

not integers or stand alone constant values

enum vs #define

9

COMP1511/COMP1911

● We can have enum members in our structs!

struct with enum members!

10

enum student_status {

 ENROLLED, WITHDRAWN, LEAVE

};

struct student {

 enum student_status status;

 double wam;

};

struct student z123456;

z123456.status = ENROLLED;

z123456.wam = 95.9;

COMP1511/COMP1911

pokemon.c

● We can have enum members in our structs!
● Create a enum for pokemon types FAIRY, WATER, FIRE etc
● Create a struct called pokemon with a field for the type and

some other relevant fields
● Make a pokemon variable and set it with data

Coding Example:

11

COMP1511/COMP1911

Have you seen functions before?

12

COMP1511/COMP1911

● Yes you have seen functions before!
● You have been writing main functions
● You have also used functions

○ printf and scanf
● But what is a function?
● And will we finally find out what void and return really mean?
● And can we start writing our own functions now instead,

instead of writing all of our code in the main function?

Functions

13

COMP1511/COMP1911

● A function is an independent, reusable block of code that
performs a specific task

● The benefits of functions are:
○ Modularity: Breaks complex programs into simpler, manageable

pieces, easier to read and understand
○ Reusability: Avoids code duplication, as you can reuse the

functions
○ Abstraction: Hides the implementation details and allows you to

focus on higher-level logic.
○ Allow us to test and debug smaller chunks of code in isolation

What are Functions. Why do we use them?

14

COMP1511/COMP1911

● Functions have parameters
○ Parameters define what type of arguments (inputs) the functions

need
○ Functions with void in its parameter list needs no arguments

(inputs)
● Functions may return a single value

○ The type of the function is the type that it returns
○ A return type of void means the function does not return a value

■ It can still use return to end the function without giving it a return
value

Functions

15

COMP1511/COMP1911

● This is a function prototype
○ it gives programmers and the compiler information about how the

function can be used

Function Prototypes

16

int maximum(int x, int y);

return type:

What type

does this

 function return?

Function name:

What is the name

of the function?

e

Parameters:

What inputs do I

need to give my

function

COMP1511/COMP1911

● We do not need to see the implementation code of a function to
use it
○ For example you have not seen the implementation of printf or

scanf but you know how to use them.
● When we want to use a function, we do a function call

○ We must pass in the correct sequence of arguments of the
correct type in the correct order

○ If our function has a return value we may wish to use or store it

Using Functions

17

COMP1511/COMP1911

Examples of calling functions with various prototypes:

Functions calls

18

int maximum(int x, int y);
void print_stars(int number_of_stars);
void print_warning(void);

int main(void) {
int num = 7;
// Store the return value in a variable to use later
int max = maximum(10, num);
print_stars(max);
print_warning();
return 0;

}

COMP1511/COMP1911

You will also need to implement your functions

Function Definition

19

// This function returns a value of type int

int maximum(int x, int y) {

 int max = x;

 if (x < y) {

 max = y;

 }

 // returns an int value

 return max;

}

COMP1511/COMP1911

Function Definitions

20

// This function does not need a return

// statement since its return type is void

void print_stars(int number_of_stars) {

 int i = 0;

 while (i < number_of_stars) {

 printf("*");

 i = i + 1;

 }

 printf("\n");

}

COMP1511/COMP1911

Function Definitions

21

// This function does not need a

// return statement since its return type

// is void

// It takes no inputs as the parameter list

// is also void

void print_warning(void) {

 printf("#########################\n");

 printf("Warning: Don't plagiarise\n");

 printf("#########################\n");

}

COMP1511/COMP1911

● The code of a function is only executed when requested via a
function call

● When a function is called
○ Current code execution is halted
○ Execution of the function body begins
○ Reaching the last statement of the function or reaching a return

statement stops execution of a function
● When the function completes, execution resumes at the

instruction after the function call.

Function Calls and Execution Flow

22

COMP1511/COMP1911

● It is good style to have
○ main function at the top of the file
○ implement additional user defined functions below it.

● To do this we need to write prototypes above main function
○ the compiler processes the program code top-down
○ This lets the compiler know that the definition (implementation) for

these functions can be found somewhere else.
○ A compile error occurs if a function call is encountered before the

function prototype.

Prototypes and Style

23

COMP1511/COMP1911

● Every function must have a comment placed before the function
implementation describing
○ the purpose of the function
○ any side-effects the function has

● As always, choose meaningful names for your functions

Function Comments and Style

24

COMP1511/COMP1911

Quick Break

25

COMP1511/COMP1911

area_triangle.c
print_pokemon.c

Code demo

26

COMP1511/COMP1911

● Blocks of code in C are delimited by a pair if braces {}.
○ The body of a function is a common example of a block.

● Generally the scope of a variable is
○ Between where the variable is declared
○ The end of the block it was declared in

● Variables declared inside functions are called local variables.

Memory and Scope

27

COMP1511/COMP1911

● Local variables are created when the function called and
destroyed when function returns

● A function’s variables are not accessible outside the function

Functions and Local Variables

28

double add_numbers(double x, double y) {

 // sum is a local variable

 double sum;

 sum = x + y;

 return sum;

}

COMP1511/COMP1911

● Variables declared outside a function have global scope
○ Do NOT use these!

Global Variables

29

// result is a global variable BAD DO NOT USE IN COMP1511

int result;

int main(void) {

 // answer is a local variable GOOD

 int answer;

 return 0;

}

COMP1511/COMP1911

● Primitive types such as int, char, double and also enum and
structs are passed by value
○ A copy of the value of the variable is passed into the function

E.g. This increment function is just modifying its own copy of x

Passing by Value

30

void increment(int x) {

 // modifies the

 // local copy of x

 x = x + 1;

}

COMP1511/COMP1911

Passing by Value

31

int main(void) {

 int x = 10;

 // passes the value 10

 // into the function

 increment(x);

 // x will still be 10

 printf("Main: %d\n", x);

 return 0;
}

void increment(int x) {

 // modifies the

 // local copy of x

 x = x + 1;

 printf("Inc: %d\n", x);

}

1110

COMP1511/COMP1911

One way to check that scanf()
successfully scanned data is
to do something like :

Using Functions in Conditions

32

You can call functions inside
your if statements or your
while loops like this:

int scanf_return;

scanf_return = scanf("%d", &n);

while (scanf_return == 1) {

 ...

 scanf_return = scanf("%d", &n);

}

while (scanf("%d", &n) == 1) {

 ...

}

Note: You can’t do this with functions
that have void return types

COMP1511/COMP1911

Style

33

COMP1511/COMP1911

● The code we write is for human eyes
● We want to make our code:

○ easier to read
○ easier to understand

● Coding should always be done in style - it is worth it…
○ ensures less possibility for mistakes
○ ensures faster development time
○ You also get marks for style in assignments
○ If we need to mark your code in the final manually it is good if it is

not a dog’s breakfast

What is Style? Why Style?

34

COMP1511/COMP1911

● Indentation and Bracketing
● Names of variables and

functions
● Structuring your code
● Nesting
● Repetition
● Comments
● Consistency

What is Good Style?

35

MEME

COMP1511/COMP1911

Bad Style Demo

36

Let’s look at
bad_style.c
● What are some

things we should
fix?

COMP1511/COMP1911

● Write comments where they are needed
● Name your variables based on what that variable is there to do
● In your block of code surrounded by {}:

○ Indent 4 spaces
○ Vertically align closing bracket with statement that opened it

● One expression per line
● Consistency in spacing
● Watch your code width (<= 80 characters)
● Watch the nesting of IFs - can it be done more efficiently?
● Break code into functions

Clean as you go

37

COMP1511/COMP1911

● Often different organisations you work for, will have their own
style guides, however, the basics remain the same across

● Your assignment will have style marks attached to it
● We have a style guide in 1511 that we encourage you to use to

establish good coding practices early:
● https://cgi.cse.unsw.edu.au/~cs1511/24T1/resources/style_guide.html

Style Guide

38

https://cgi.cse.unsw.edu.au/~cs1511/24T1/resources/style_guide.html

COMP1511/COMP1911

● If you do not understand something, do not panic!
● It is perfectly normal to not understand a concept the first time

it is explained to you
○ ask questions in lectures
○ try and read over the information again
○ rewatch lectures
○ ask questions in the tutorial and the lab
○ ask questions on the forum
○ go to help sessions
○ go to revision sessions

Things are getting harder…

39

COMP1511/COMP1911

● If you can't solve a problem
○ break down the problem into smaller and smaller steps until there

is something that you can do
○ ask us lots of questions!

● Remember learning is hard and takes time
● Solving problems is hard and takes practice
● We are here to help you!!!

Things are getting harder…

40

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

41

https://forms.office.com/r/2GGPJaSE37

https://forms.office.com/r/2GGPJaSE37

COMP1511/COMP1911 42

● Recap of while loops, nested while loops
○ grid.c (clock.c left as an exercise)

● Recap of structs
○ struct_student.c struct_points.c

● Enums
○ enum_weekdays.c

● Enums and structs
○ pokemon.c

What did we learn today?

COMP1511/COMP1911 43

● Functions
○ simple_functions.c area_triangle.c print_pokemon.c

memory_scope.c pass_by_value.c scanf_loop.c
● Style

○ bad_style.c

What did we learn today?

COMP1511/COMP1911 44

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

