
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Loops
Custom Data Types

Week 2 Lecture 2



COMP1511/COMP1911

Monday’s Lecture
● Conditions

○ Relational Operators
○ Logical Operators

● If statements
○ if-else
○ chaining if-else

● We did not complete the following which we will do today!
○ Nested If Statements
○ While loops

2



COMP1511/COMP1911

Today’s Lecture
● From Monday

○ nested if statements 
○ while loops

● Nested While Loops 
● Custom data types

○ structs
○ enums (maybe if we get time)

3



COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_2/

 

Link to Week 2 Live Lecture Code

4

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_2/


COMP1511/COMP1911

if (x > 0) {

    if (x > 100) {

        printf("big");

    } else {

        printf("small");

    }

    printf(" positive");

}

Nested If Statements

5

● We can have nested if 
statements 
○ These are if statements 

inside if statements! 
● We don’t want too much nesting 

though for style!
○ Maximum 5 levels

● Note the indentation
○ Every time we have { we 

indent a level
○ Every time we have } we 

indent one less level



COMP1511/COMP1911

While Loops

6

while bowl of chips is not empty
each chip

while in lecture 
stay awake



COMP1511/COMP1911

● C normally executes line by line 
● if statements allow us to select 

parts of our code 
● But how can we repeat code?
● Copy-pasting the same code 

again and again is not a feasible 
solution 

Repetition, Repetition, Repetition in C

7



COMP1511/COMP1911

While Loops
● While something is true, do something
● Here is the general while loop syntax

8

while (condition) { 

    // Code in here runs again and again 

    // until the condition is false

    // The program will jump back to the start   

    // of the while loop when it gets to the closing 

} 



COMP1511/COMP1911

● It is very easy to make an infinite while loop
○ Handy Tip: Type Ctrl + C to end infinite while loops

Infinite while Loops

9

while (1) {
    printf("I love my COMP1511 lectures!\n");
}

int push_ups = 0;
while (push_ups < 100) {
    printf("You have done %d push-ups!\n", push_ups);
}



COMP1511/COMP1911

● counting loops
○ The number of iterations is known 
○ Use a variable as a counter to control how many times a loop runs

● conditional loops
○ We may not know how many times we will need to loop
○ Conditions terminate the loop based on calculations or user input

● sentinel loops 
○ Special case of conditional loops
○ A sentinel loop continues to execute until a special value (the 

sentinel value) is encountered. 

3 Ways of Controlling while loops

10



COMP1511/COMP1911

● Use a loop control variable (“loop counter”) to count loop 
repetitions.
○ We stop when the loop reaches a certain limit.

● Useful when we know how many iterations we want.

Counting while loops

11

 // 1. Initialise loop counter before the loop

 int counter = 0;

 while (counter < 10) { // 2. check loop counter condition

    printf("Here we go loop de loop!\n");

    counter = counter + 1; // 3. update loop counter

 }



COMP1511/COMP1911

● Iterate as long as your condition is still true 
● Used when we don't know how many times we need to loop 

Conditional Loops

12

// 1. Initialise the loop control variable
int total_kombucha_ml = 0;
int kombucha_ml;
while (total_kombucha_ml <= 2000) { // 2. Test the loop condition
    printf("Please enter the ml of kombucha: ");
    scanf("%d", &kombucha_ml);

// 3. Update loop control variable
    total_kombucha_ml = total_kombucha_ml + kombucha_ml; 
}
printf("Stop! That would bring you to %dml!!\n", total_kombucha_ml);



COMP1511/COMP1911

● Process data until reaching a special value (sentinel value)
○ Special case of conditional loop

Sentinel Loops

13

int number = 0;

int end_loop = 0;       // 1. Initialise the loop control variable

while (end_loop == 0) { // 2. Test the loop condition 

    scanf("%d", &number); 

    if (number < 0) {   // We want a negative value to end the loop

        end_loop = 1;   // 3. Update the loop control variable 

    } else {

        printf("You entered %d\n", number);

    }

}



COMP1511/COMP1911

while_infinite.c
while_count.c
while_condition.c
while_sentinel.c

Write a program that reads integers from the user and sums them 
until a non-integer input is encountered 
while_scanf_sum.c

Code Demo

14



COMP1511/COMP1911

Quick Break

15



COMP1511/COMP1911

● A loop in a loop
● If we put a loop inside a loop . . . 
● Each time a loop runs 

○ It runs the other loop 
● The inside loop ends up running 

a LOT of times
● How many times does the 

second hand go around the clock
for every minute? For every hour?

Nested While Loops

16



COMP1511/COMP1911

How could we print out 
something like this?

Why are nested while loops useful?

17

1 2 3 4 5  
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4  5

1
1 2
1 2 3
1 2 3 4  
1 2 3 4 5 

Or this? Or this?

1 2 3 4 5  
1   3   5
1   3   5
1   3   5
1 2 3 4  5



COMP1511/COMP1911

Code Demo Nested While Loop
grid.c
pyramid.c
pattern.c (exercise you can try and we will do on Monday)
clock.c

18



COMP1511/COMP1911

Custom Data Types

19



COMP1511/COMP1911

Organising related data

20

Is there a better way of storing related data?

char my_first_initial = 'A';

char my_last_initial = 'F';

int my_age = 23;

double my_lab_mark = 2.4;

char brianna_first_initial = 'B';

char brianna_last_initial = 'K';

int brianna_age = 21;

double brianna_lab_mark = 9.9;

int x1 = 0;

int y1 = 0;

int x2 = 10;

int y2 = -5;



COMP1511/COMP1911

Organising related data

21

Is there a better way of storing related data?

char my_first_initial = 'A';

char my_last_initial = 'F';

int my_age = 23;

double my_lab_mark = 2.4;

char brianna_first_initial = 'B';

char brianna_last_initial = 'K';

int brianna_age = 21;

double brianna_lab_mark = 9.9;

int x1 = 0;

int y1 = 0;

int x2 = 10;

int y2 = -5;



COMP1511/COMP1911

User defined Data Type: struct

22

● So far, we have used built-in C data types (int, char, double)
● These store a single item of that type
● structs allow us to define our own data types (structures) to 

store a collection of types



COMP1511/COMP1911

User defined Data Type: struct

23

To create a struct, there are three steps: 
1. Define the struct (outside the main)

○ Note this does not create a variable or set aside any memory. 
○ It just defines the type. 

2. Declare the struct variable/s 
3. Initialise the struct variables/s



COMP1511/COMP1911

● We define our structs before our main function.
● structs are types that we design, made up of data elements 

that we decide belong together
○ we call these elements members or fields
○ we need to define a type and name for each member

1. Defining a struct

24

struct coordinate {

    int x;

    int y;

};

struct student {

    char first_initial;

    char last_initial;

    int age;

    double lab_mark;

};



COMP1511/COMP1911

● Creating variables using your custom struct type

2. Declaring a struct variable

25

struct coordinate {

    int x;

    int y;

};

int main(void) {

// Declare 2 variables of 

    // type struct coordinate

    struct coordinate point_1;

    struct coordinate point_2;

    

struct student {

    char first_initial;

    char last_initial;

    int age;

    double lab_mark;

};

int main(void) {

// Declare a variable

// of type struct student

    struct student brianna;

        



COMP1511/COMP1911

● We access a member of a struct by using the dot operator .

3. Initialising struct data

26

int main(void) {

// Declare a variable

// of type struct student

struct student brianna;

// Initialise the members of

// your struct variable

    brianna.first_initial = 'B';

    brianna.last_initial = 'K';

brianna.age = 21;

brianna.lab_mark = 9.9;

struct student {

    char first_initial;

    char last_initial;

    int age;

    double lab_mark;

};

    

    



COMP1511/COMP1911

● How would we set point_1 to (0, 0) and point_2 to (10, -5)

Quick Question: struct

27

struct coordinate {

    int x;

    int y;

};

    

int main(void) {

// Declare 2 variables of 

    // type struct coordinate

    struct coordinate point_1;

    struct coordinate point_2;

    



COMP1511/COMP1911

● How would we set point_1 to (0, 0) and point_2 to (10, -5)

Quick Question Solution: struct

28

struct coordinate {

    int x;

    int y;

};

    

int main(void) {

// Declare 2 variables of 

    // type struct coordinate

    struct coordinate point_1;

    struct coordinate point_2;

    point_1.x = 0;

    point_1.y = 0;

    point_2.x = 10;

    point_2.y = -5;



COMP1511/COMP1911

● Data types that allow you to assign names to integer constants 
to make it easier to read and maintain your code
○ By default the enumerated constants will have int values 0, 1, 2, …
○ Note you can’t have two enums with the same constant names

Enumerations

29

// Example of the syntax used to define an enum

enum enum_name {STATE0, STATE1, STATE2, ...};

// E.g. define an enum for day of the week
enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

// E.g. define an enum with specified int values
enum status_code {OK = 200, NOT_FOUND = 404};



COMP1511/COMP1911

enum code example

30

// Define an enum with days of the week

// make sure it is outside and before the main function

// MON will have value 0, TUE 1, WED 2, etc

enum weekdays {MON, TUE, WED, THU, FRI, SAT, SUN};

int main (void) {

    enum weekdays day;

    day = SAT;

    // This will print out 5

    printf("The day number is %d\n", day);

    return 0;

}



COMP1511/COMP1911

● enums are useful when we want to define a specific fixed set of 
constants

● The advantages of using enums over #defines
○ Enumerations are automatically assigned values, which makes 

the code easier to read 
■ Think of the case where you have a large number of related 

constants 
● #define are useful for other contexts such as constants that are 

not integers or stand alone constant values

enum vs #define

31



COMP1511/COMP1911

● We can have enum members in our structs!

struct with enum members!

32

enum student_status {

    ENROLLED, WITHDRAWN, LEAVE

};

struct student {

    enum student_status status;

    double wam;

};

struct student z123456;

z123456.status = ENROLLED;

z123456.wam = 95.9;



COMP1511/COMP1911

pokemon.c

● We can have enum members in our structs!
● Create a enum for pokemon types FAIRY, WATER, FIRE etc
● Create a struct called pokemon with a field for the type and 

some other relevant fields
● Make a pokemon variable and set it with data

Coding Example: 

33



COMP1511/COMP1911

Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.

34

https://forms.office.com/r/Pc7gMkscYy



COMP1511/COMP1911 35

● Nested if statements 
○ nested.c

● While loops 
○ while_infinite.c, while_count.c, 

while_conditional.c, while_sentinel.c, 
while_scanf_sum.c

● Nested while loops
○ grid.c, pyramid.c, pattern.c, clock.c

What did we learn today?



COMP1511/COMP1911 36

Custom Data types
● structs

○ struct_student.c, struct_points.c
● enums

○ enum_weekdays.c 
● structs containing enums

○ pokemon.c

What did we learn today?



COMP1511/COMP1911 37

Content Related Questions:  
Forum

Admin related Questions email: 
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

