
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Control Flow

Week 2 Lecture 1

COMP1511/COMP1911

Last Week
● You went to your first tut/lab
● compiling and running hello_world.c
● variables and types (int, double, char)
● printf() and scanf()
● Arithmetic operators and expressions (maths calculations)
● We did not finish Constants from last weeks Thursday Lectures

2

COMP1511/COMP1911

● Week 1 lab was not worth any marks
● Week 2 lab is!

○ Exercises are due to be submitted by Monday 8pm the following
week

○ 3 dot questions are challenge questions and are sometimes very
difficult and time consuming. These are not essential to get full
marks in the labs.

Labs this week

3

COMP1511/COMP1911

Today’s Lecture
Recap of scanf, printf and expressions from last thursday.
Constants, that we did not get to last thursday

Getting harder…
● if statements
● relational and logical operators
● error checking scanf input
● while loops (if there is time…)

4

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_2/

Link to Week 2 Live Lecture Code

5

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_2/

COMP1511/COMP1911

A Brief Recap: Variables and printf

6

int number_of_weeks = 10;

double distance_in_cm = 95.5;

char grade = 'B';

printf("There are %d weeks\n", number_of_weeks);

printf("The distance is %lf cm\n", distance_in_cm);

printf("You got a %c!\n", grade);

distance_in_cm = distance_in_cm - 5;

printf("The distance is now %lf cm\n", distance_in_cm);

COMP1511/COMP1911

A Brief Recap: Variables scanf

7

int x;

int y;

printf("Enter 2 integers: ");

scanf("%d %d", &x, &y);

printf("You entered %d %d\n", x, y);

double real;

printf("Enter a real number: ");

scanf("%lf", &real);

printf("You entered %lf\n", real);

COMP1511/COMP1911

● Can you spot the difference between the 2 code fragments
below?

● How would the code fragments behave differently?

A Brief Recap: Variables scanf

8

char character;

printf("Enter a character: ");

scanf(" %c", &character);

printf("%c\n", character);

char character;

printf("Enter a character: ");

scanf("%c", &character);

printf("%c\n", character);

COMP1511/COMP1911

A Brief Recap: What will this do?

9

int x;

int y;

printf("Enter 2 integers: ");

scanf("%d %d", &x, &y);

int average = (x + y) / 2;

printf("The average of %d and %d is %d\n", x, y, average);

int z = 5 / 0;

char letter_1 = 'B' - 'A' + 'a';

char letter_2 = 'e' - 'a' + 'A';

COMP1511/COMP1911

● Constants are like variables, only they never change!
● We use #define and follow it with the name of the constant

and its value
● Style Guide: we use UPPERCASE so it is easy to recognise they

are constants

Constants

10

#include <stdio.h>
// Define constants after your #includes
// but before your main
#define MAX_SIZE 12
#define PI 3.1415
#define MEANING_OF_LIFE 42

COMP1511/COMP1911

Write a program convert.c that
● prompts the user enter the number of hours
● calculates how many minutes that is equivalent to
● prints out the number of minutes

See sample output below:

$./convert
Please enter the number of hours: 2.5
That is 150.00 minutes

Coding Time

11

COMP1511/COMP1911

● if statements allow C to make decisions based upon
true/false questions like
○ is x even
○ is y greater than 10
○ is x less than y

● true and false are ints in C
○ 0 is false
○ 1 or any non-zero value is considered true in C

Making Decisions with if

12

COMP1511/COMP1911

● Our true/false question is called a condition
● If the answer to our question i.e. our condition is true

then we run the code inside the if block’s braces {}

if statement

13

// The code inside the curly brackets only runs if

// the condition is true

if (condition) {

 // do something;

 // do more things;

}

COMP1511/COMP1911

● To write conditions we need to be
able to compare things

● Relational Operators compare
pairs of numbers

● All of these will result in 0 if false
and a 1 if true

● Be careful not to mix up = and ==
○ Use = for assigning a value
○ Use == for comparing 2 values

● Be careful using == and != for
double values

Relational Operators

14

Operator

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

== Is equal to

!= Not equal to

COMP1511/COMP1911

Quick Questions: Relational Operators
true (1) or false (0):
int x = 4;
● 5 < 2
● x > 2
● x <= 4
● 3 >= x
● x == -4
● 'A' != 'B'

15

COMP1511/COMP1911

What will get printed?
if (1) {
 printf("Hooray\n");
}

if (0) {
 printf("Yay!\n");
}

if (4 == 4) {
 printf("I love C!\n");
}

if ('Z' == 'z') {
 printf("I am cool!\n");
}

int x = 5;
int y = 10;

if (x < 0) {
 printf("x is negative!\n");
}

if (y >= x) {
 printf("y is greater or equal\n");
}

if (x != y) {
 printf("x and y not equal!\n");
}

}

16

COMP1511/COMP1911

● We can add an else statement to run a block of code when our
condition is not true.

if-else statement

17

if (condition) {

 // this code runs if condition

 // is true (non-zero)

} else {

 // this code runs if condition

 // is false (0)

}

COMP1511/COMP1911

if-else statement example

18

if (temperature <= COLD) {

 printf("I am cold!\n");

} else {

 printf("I am not cold!\n");

}

#define COLD 10

COMP1511/COMP1911

We can chain multiple if statements to check for multiple options

Chaining if statements

19

if (condition_1) {

 // this code runs if condition_1 is true (non-zero)

} else if (condition_2) {

 // this code runs if condition_1 was false

 // and condition_2 is true (non-zero)

} else {

 // this code runs if condition_1 and condition_2

 // are both false (0)

}

COMP1511/COMP1911

if (temperature <= COLD) {

 printf("I am cold!\n");

} else if (temperature < HOT) {

 printf("Just right!\n");

} else {

 printf("I am hot!\n");

}

Chaining if-statements example

20

#define COLD 10

#define HOT 25

COMP1511/COMP1911

Write a program odd_even.c that
● prompts the user enter an integer
● prints out whether the number is even or odd
$./odd_even
Please enter an integer: 8
Even!
./odd_even
Please enter an integer: 3
Odd!

Coding Time

21

COMP1511/COMP1911

Write a program guessing_game.c that
● prompts the user enter an integer
● prints out higher, lower, correct if it is equal to the secret

number (42)
$./guessing_game
Please enter an integer: 8
Higher!
$./guessing_game
Please enter an integer: 42
Correct!

Coding Time

22

COMP1511/COMP1911

if (x > 0) {

 if (x > 100) {

 printf("big");

 } else {

 printf("small");

 }

 printf(" positive");

}

Nested If Statements

23

● We can have nested if
statements
○ These are if statements

inside if statements!
● We don’t want too much nesting

though for style!
○ Maximum 5 levels

● Note the indentation
○ Every time we have { we

indent a level
○ Every time we have } we

indent one less level

COMP1511/COMP1911

Quick Break

24

COMP1511/COMP1911

Often we want to ask more than one true or false question at
the same time
● E.g. Is x greater than y and less than z?

Logical Operators

25

Operator Name Explanation Example usage

&& and true if both operands are true x > y && x < z

|| or true if least one operand is true x == MAX || y == MAX

! not true if the operand is false ! (x >= 0)

COMP1511/COMP1911

Truth Tables
● Truth tables show the results of logical operators with all

different combinations of possibilities

26

C1 C2 C1 && C2

0 0 0

0 1 0

1 0 0

1 1 1

C1 C2 C1 || C2

0 0 0

0 1 1

1 0 1

1 1 1

C !C

0 1

1 0

COMP1511/COMP1911

Warning: Don’t do something like 0 < x < 10
● It might compile and run but probably does not do what

you want
● It is no checking whether x is between 0 and 10
● Do something like this instead: x > 0 && x < 10
Warning: Beginners sometimes get confused with && and ||
● ((x > 0) || (x < 10))

○ This is always true
● ((x < 0) && (x > 10))

○ This is always false

Logical Operators

27

COMP1511/COMP1911

Quick Questions: Logical Operators
true (1) or false (0)

char c = 'g';

int x = 4;

● (c >= 'a') && (c <= 'm')
● (x < 0) || (x > 10)

● !((x < 0) || (x > 10))

28

COMP1511/COMP1911

Short circuit Evaluation

int x = 3;

int y = ?;

if ((x == 3) || (y == 5)) {

29

Do we need to know the value of y to know if these conditions
are true?

int x = 4;

int y = ?;

if ((x == 3) && (y == 5)) {

COMP1511/COMP1911

● The operators && and || evaluate

○ their left-hand-side operand first and only evaluate their

○ right-hand-side operand if necessary

● Operator && only evaluates its RHS if the LHS is true

● Operator || only evaluates its RHS if the LHS is false

● This is very useful because we can safely write:

 if ((x != 0) && ((y / x) > 10))

Short Circuit

30

COMP1511/COMP1911

Coding Time with Logical Operators
character_cases.c

Write a program to allow a user to enter a character
Print out whether the character is an uppercase letter,
a lowercase letter, or not a letter.

What test cases should we make sure we check?

31

COMP1511/COMP1911

Breaking Things
It is really good practice to
think about how it is possible
to break your code?
● What can go wrong?
● Important to have good

error messages:
○ Tells the user exactly

what has gone wrong
○ How can they fix it?
○ What is happening!?

32

COMP1511/COMP1911

Can we check for input errors from
scanf?

33

COMP1511/COMP1911

scanf return value and error checking

34

● We tell scanf what we want it to scan in
○ But what if the user types in the wrong type of data?

● scanf has a way of telling us!
○ It returns the number of inputs it scanned in successfully and we

can assign it to a variable and/or use it for error checking.

int inputs_read = scanf("%d %d", &x, &y);

if (inputs_read != 2) {

 printf("Incorrect input\n");

}

COMP1511/COMP1911

Coding Time

35

● Let’s modify guessing_game.c to check that user entered a
valid integer…

COMP1511/COMP1911

While Loops

36

while bowl of chips is not empty
each chip

while in lecture
stay awake

COMP1511/COMP1911

● C normally executes line by line
● if statements allow us to select

parts of our code
● But how can we repeat code?
● Copy-pasting the same code

again and again is not a feasible
solution

Repetition, Repetition, Repetition in C

37

COMP1511/COMP1911

While Loops
● While something is true, do something
● Here is the general while loop syntax

38

while (condition) {

 // Code in here runs again and again

 // until the condition is false

 // The program will jump back to the start

 // of the while loop when it gets to the closing

}

COMP1511/COMP1911

● It is very easy to make an infinite while loop
○ Handy Tip: Type Ctrl + C to end infinite while loops

Infinite while Loops

39

while (1) {
 printf("I love my COMP1511 lectures!\n");
}

int push_ups = 0;
while (push_ups < 100) {
 printf("You have done %d push-ups!\n", push_ups);
}

COMP1511/COMP1911

● counting loops
○ The number of iterations is known
○ Use a variable as a counter to control how many times a loop runs

● conditional loops
○ We may not know how many times we will need to loop
○ Conditions terminate the loop based on calculations or user input

● sentinel loops
○ Special case of conditional loops
○ A sentinel loop continues to execute until a special value (the

sentinel value) is encountered.

3 Ways of Controlling while loops

40

COMP1511/COMP1911

● Use a loop control variable (“loop counter”) to count loop
repetitions.
○ We stop when the loop reaches a certain limit.

● Useful when we know how many iterations we want.

Counting while loops

41

 // 1. Initialise loop counter before the loop

 int counter = 0;

 while (counter < 10) { // 2. check loop counter condition

 printf("Here we go loop de loop!\n");

 counter = counter + 1; // 3. update loop counter

 }

COMP1511/COMP1911

● Iterate as long as your condition is still true
● Used when we don't know how many times we need to loop

Conditional Loops

42

// 1. Initialise the loop control variable
int total_kombucha_ml = 0;
int kombucha_ml;
while (total_kombucha_ml <= 2000) { // 2. Test the loop condition
 printf("Please enter the ml of kombucha: ");
 scanf("%d", &kombucha_ml);

// 3. Update loop control variable
 total_kombucha_ml = total_kombucha_ml + kombucha_ml;
}
printf("Stop! That would bring you to %dml!!\n", total_kombucha_ml);

COMP1511/COMP1911

● Process data until reaching a special value (sentinel value)
○ Special case of conditional loop

Sentinel Loops

43

int number = 0;

int end_loop = 0; // 1. Initialise the loop control variable

while (end_loop == 0) { // 2. Test the loop condition

 scanf("%d", &number);

 if (number < 0) { // We want a negative value to end the loop

 end_loop = 1; // 3. Update the loop control variable

 } else {

 printf("You entered %d\n", number);

 }

}

COMP1511/COMP1911

while_infinite.c
while_count.c
while_condition.c
while_sentinel.c

Write a program that reads integers from the user and sums them
until a non-integer input is encountered
while_scanf_sum.c

Code Demo

44

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

45

https://forms.office.com/r/vKrxXCYzPR

COMP1511/COMP1911 46

● Recap and Constants (convert.c)
● If statements

○ Conditions and relational operators (odd_even.c
guessing_game.c)

○ Conditions and Logical Operators (character_cases.c)
○ Error checking scanf input (guessing_game.c)

● While Loops
○ while_infinite.c, while_count.c, while_conditional.c,

while_sentinel.c, while_scanf_sum.c

What did we learn today?

COMP1511/COMP1911 47

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

