
COMP1511/COMP1911

COMP1511/1911 Programming Fundamentals

Variables and Constants

Week 1 Lecture 2

COMP1511/COMP1911

Last Lecture
● Welcomes and Introductions
● How COMP1511/COMP1911 works
● How to get help
● What is programming?
● Working in Linux
● A first look into C

○ printf

2

COMP1511/COMP1911

Today’s Lecture
● Memory and how we store data

○ Types and variables
● Printing out and reading in data
● Arithmetic Operators and Expressions
● Constants

3

COMP1511/COMP1911

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_1/

Link to Week 1 Live Lecture Code

4

https://cgi.cse.unsw.edu.au/~cs1511/24T3/live/week_1/

COMP1511/COMP1911

A Brief Recap: Our First Program

5

// A program showing how to print output in C

// The first of many C programs you will C

#include <stdio.h>

int main(void) {

 printf("Hello COMP1511 and COMP1911\n");

 return 0;

}

COMP1511/COMP1911

Quick Question: What will this print out?

6

// A tricky example with escape characters

// Warning: this may hurt your brain

#include <stdio.h>

int main(void) {

 printf("\\\"\\\n");

 return 0;

}

COMP1511/COMP1911

CPU:
● processes and executes our instructions
● performs arithmetic etc

RAM:
● Stores the instructions and the data we need
● What we call memory in this course

Hard Drive/Solid State Drive:
● Persistent storage of data e.g files

Basics of Computer Hardware

7

COMP1511/COMP1911

How Do Computers Store Data?

8

Computers store everything in binary : 0s and 1s

Why?
● Computer memory is a large number of on-off switches
● We use 0 and 1 to represent the off and on states
● We call these bits

We often collect these together into bunches of 8 bits
● We call these bytes

COMP1511/COMP1911

How can we use memory in our programs?

9

COMP1511/COMP1911

● A name for a piece of memory
● Can store a specific type of data
● Has a specific size (number of bytes)
● Called a variable as we can change what is stored in there!

Variables

10

COMP1511/COMP1911

We will start out with 3 common primitive types

Primitive Types

11

Type Description Examples

int Integers (whole numbers) 1, 0, 999, -42

char Individual characters ‘A’, ‘a’ ,‘?’

double Floating point numbers 3.14159, -0.001

COMP1511/COMP1911

● Declaring a variable tells C to set aside a chunk of memory for
the variable.

● We only need to do this once for each variable.
● To declare a variable, you use the syntax:

type name;

● E.g. the following declares a variable named age, of type int
int age;

Declaring a variable

12

COMP1511/COMP1911

Assigning values to Variable

13

// Declare a variable

int my_age;

// Initialise the variable

my_age = 21;

● Before using a variable, we need to give it an initial value
○ Until then, it contains garbage values

● We use = (the assignment operator) to set values in
variables

// Declare and initialise

// a variable in one step

int my_age = 21;

COMP1511/COMP1911

● Should describe what the variable is storing
○ e.g. “age”, “radius”
○ rather than “a”, “b”

● C is case sensitive:
○ “ansWer” and “answer” are two different variable names

● We always use lower case letters to start our variable names
● We use snake_case

○ We can split words with underscores: E.g. “long_answer”
● C reserves some words

○ E.g. “return” , “int” and “double” can’t be used as variable names

Variable Names

14

COMP1511/COMP1911

● Variable names are an important part of programming style
● We name variables to make it obvious what we are storing
● This makes our code more readable for

○ ourselves
○ others such as colleagues
○ and in your case, your tutors!

● We have a style guide for the course which you should follow
https://cgi.cse.unsw.edu.au/~cs1511/24T3/resources/style_guide.html

Variable Names are Important

15

https://cgi.cse.unsw.edu.au/~cs1511/24T3/resources/style_guide.html

COMP1511/COMP1911

● We can represent integers with the type int
○ whole number, with no fractions or decimals places

● Most commonly uses 32 bits (4 bytes)
○ This gives us exactly 232 different possible values

● The maximum is very large, but it's not infinite!
○ Exact ranges from -2,147,483,648 (-231) to 2,147,483,647 (231 - 1)
○ Hmmm, what could possibly go wrong with this?

int data type

16

COMP1511/COMP1911

● We use char to store single characters
● The syntax is to put it in single quotes: ‘a’
● They are really integers under the hood

○ char stores a small integer
○ Usually 8 bits (1 byte)
○ Guaranteed to be able to store integers 0..127

● When we assign ‘a’ to a char variable, it really stores the ASCII
code 97.

● Type ascii on the command line to see ASCII codes.

char data type

17

COMP1511/COMP1911

● We use double to store Real numbers
○ can only represent a subset of all possible Real

numbers
● Size is 64 bits (8 bytes)
● Warning: double are approximations and may not be

exact!
○ Hmmm, what could possibly go wrong with this?

double data type

18

COMP1511/COMP1911

int main(void) {
 // Declare a variable
 int my_age;
 // initialise a variable
 my_age = 21;

 // We can modify variable values
 my_age = 25;

 // We can also declare and initialise in same line
 double radius = 3.5;
 char grade = 'B';
 return 0;
}

Coding with Variables

19

COMP1511/COMP1911

How can we print out the values in our
variables?

20

COMP1511/COMP1911

A format specifier is a % symbol
followed by some characters to
let the compiler know:
● what data type you want to

print
● where to print the value

After the comma you put the
variable name/s you want to
print

Printing out variables with printf

21

Type Format Specifier

int %d

double %lf

char %c

int my_age = 21;

printf("My age is %d\n", my_age);

COMP1511/COMP1911

● The variables must match the symbols in the same order as
they appear!

● You can have as many as you want and of different types also!

Printing out many variables with printf

22

int height = 21;

double radius = 3.5;

printf("Height is %d and radius is %lf\n", height, radius);

char letter = 'A';

printf("The letter %c has ASCII value %d\n", letter, letter);

COMP1511/COMP1911

print_variables.c
print_errors.c

Code Demo

23

COMP1511/COMP1911

Quick Break

24

COMP1511/COMP1911

How can we read in input from the user?

25

COMP1511/COMP1911

Reading input with scanf

26

● Uses a similar format to printf
● Format specifiers %d , %lf , %c are used in the same way
● Difference is we need to use & before each variable

○ The & symbol tells scanf the address of the variable in memory
(where the variable is located) so it knows where to store the
value

● e.g. Reading in an integer

int age;

scanf("%d", &age);

COMP1511/COMP1911

Example scanf code

27

#include <stdio.h>
int main(void) {
 char initial;
 printf("Please enter your first initial: ");
 scanf("%c", &initial);

 int age;
 printf("Please enter your age: ");
 scanf("%d", &age);

 double height;
 printf("Please enter your height in cm: ");
 scanf("%lf", &height);
 return 0;
}

COMP1511/COMP1911

scan_variables.c
scanf_confusion.c
scanf_magic.c

Code Demo

28

COMP1511/COMP1911

scanf magical tips and trips

29

● scanning an int ignores whitespace
○ scanf("%d", &number);

● scanning a char does not ignore whitespace
○ scanf("%c", &character);
○ This is good as sometimes we want to be able to read in spaces

and newline characters as they are actually characters!
● We can ignore leading whitespace when working with chars

with the following trick: (note the space before the %c)
 scanf(" %c", &character);

COMP1511/COMP1911

● Arithmetic operators will look
familiar!

● Warning: Division may not
always give you what you
expect…
○ Result depends on whether

dividing integer types or
doubles

● Modulus gives the remainder
○ integer types only

Mathematical Expressions in C

30

Operator

+ addition

- subtraction

* multiplication

/ division

% modulus

COMP1511/COMP1911

● Precedence is what you would expect from maths e.g.
○ a + b * c + d / e is the same as
○ a + (b * c) + (d / e)

● Association is what you would expect from maths e.g.
○ a - b + c is the same as
○ (a - b) + c

● We can also use brackets to force precedence e.g.
○ (a + b) * c

Mathematical Expressions in C

31

COMP1511/COMP1911

Precedence: Operators with higher precedence are executed
before those with lower precedence
Associativity: The direction in which operators of the same
precedence level are evaluated in an expression.

Operator Associativity
 * / % left to right
 + - left to right

https://cgi.cse.unsw.edu.au/~cs1511/24T3/resources/c-reference-sheet.pdf

Precedence and Associativity

32

https://cgi.cse.unsw.edu.au/~cs1511/24T3/resources/c-reference-sheet.pdf

COMP1511/COMP1911

Example Arithmetic Expressions Code

int x = 4;

int y = 3;

int z = (x + y) * 10 - x;

printf("%d\n", z);

int x = 3;

int y = 2;

int z = x / y;

printf("%d\n", z);

33

int x = 3;

int y = 2;

double w = x / y;

printf("%lf\n", w);

char c1 = 'a';

char c2 = c1 + 1;

printf("%c\n", c2);

What do you think these will these print?

COMP1511/COMP1911

● Characters are represented as integers
● You can add or subtract to get different ASCII values
● For example, you can add 1 to ‘a’ and get ‘b’ or add 2 to ‘a’ and

get ‘c’ or subtract 1 from ‘e’ and get ‘d’

Doing maths with char

34

char letter = 'e';

letter = letter - 1;

//This will print out 'd'

printf("%c\n", letter);

COMP1511/COMP1911

● If either operand is a double then the result is a double
○ 2.6/2 gives 1.3

● If both operands are int then then result is an int
○ This is integer division and can be surprising when you first see it
○ 3/2 gives 1 not 1.5
○ What would 1/2 be?
○ What would 1.0/2 be?

● You can do this to cast an int to the type of double
○ 1/(double)2;
○ Note: Please only use casts between ints and doubles in this

course

More about division

35

COMP1511/COMP1911

● % is called Modulus (or mod).
○ It will give us the remainder from a division between integers e.g.
○ 5 % 3 gives 2 (because 5/3 gives 1 remainder 2)

● We can tell if a number is even by checking the remainder when
dividing by 2 e.g.
○ 10 % 2 is 0
○ 7 % 2 is 1
○ 4 % 2 is 0
○ 3 % 2 is 1

More about division and modulus

36

COMP1511/COMP1911

Double Division and Mod Examples

double x = 5;

double y = 2;

int z = x / y;

printf("%d\n", z);

double x = 5;

double y = 2;

double z = x / y;

printf("%.1lf\n", z);
37

int x = 5;

double y = 2;

double z = x / y;

printf("%.1lf\n", z);

int x = 5;

int y = 2;

int z = x % y;

printf("%d\n", z);

What will these print?

COMP1511/COMP1911

● There is no such thing as
infinite precision

● We can’t precisely encode a
simple number like 1/3

● If we divide 1.0 by 3.0, we'll
get an approximation of 1/3

● The effect of approximation
can compound the more
operations you perform on
them

double precision

38

COMP1511/COMP1911

● What happens if we take the largest int and add 1?
○ It can wrap around to the minimum value and give us smallest

negative number
● What happens if we take the smallest int and subtract 1?

○ It can wrap around to the maximum value and give us largest
positive number

● Doing maths on ints and going over the limits is called overflow
○ dcc helps us by giving us runtime errors when this happens with

ints
○ This is better than it wrapping around and giving us hard to debug

incorrect answers

Integer Overflow

39

COMP1511/COMP1911

● Boeing 787 that had to be rebooted every 248 days
○ 248 days is 231 100ths of a second

Integer overflow disasters

40

https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html

https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html

COMP1511/COMP1911

● A simple integer overflow error
also caused the Ariane 5
rocket explosion

● The (different kind of)
explosion of the video
“Gangham Style” on YouTube
maxed out the views counter.
They have changed it to an 8
byte integer now.

Integer overflow disasters

41

https://www.bbc.com/future/article/20150505-the-numbers-that-lead-to-disaster

https://www.bbc.com/future/article/20150505-the-numbers-that-lead-to-disaster

COMP1511/COMP1911

● Constants are like variables, only they never change!
● We use #define and follow it with the name of the constant

and its value
● Style Guide: we use UPPERCASE so it is easy to recognise they

are constants

Constants

42

#include <stdio.h>
// Define constants after your #includes
// but before your main
#define MAX_SIZE 12
#define PI 3.1415
#define MEANING_OF_LIFE 42

COMP1511/COMP1911

Write a program convert.c that
● prompts the user enter the number of hours
● calculates how many minutes that is equivalent to
● prints out the number of minutes

See sample output below:

$./convert
Please enter the number of hours: 2.5
That is 150.00 minutes

Coding Time

43

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

44

https://forms.office.com/r/maiuL3wEkq

COMP1511/COMP1911 45

● Recap of escape characters: escaping.c
● Variables and types: int double char
● Printing variables using printf

○ print_variables.c, print_errors.c
● Reading values into variables using scanf

○ scan_variables.c, scanf_confusion.c, scanf_magic.c
● Creating arithmetic expressions (doing maths) with variables

○ expression_examples.c, tricky_expressions.c, type_troubles.c
● Defining constants in C

○ convert.c

What did we learn today?

COMP1511/COMP1911 46

Content Related Questions:
Forum

Admin related Questions email:
cs1511@unsw.edu.au

Reach Out

https://edstem.org/au/courses/19028/discussion/
mailto:cs1511@unsw.edu.au

