
Assignment 1 due reminder
Good luck <3

Pointers Recap

Used to store a memory address–
Can point to any type of data (int,
struct, array)

–

The data at the address can be
accessed (dereference) *

–

The address at a variable can be
retrieved (address_of) &

–

Pointers syntax cheat sheet

Declare a pointer: int
*int_pointer;

–

Address of: &my_variable;–
Dereference (Get the value at a
pointer): *int_pointer;

–

Dynamic Arrays and Memory

The Stack

Where information about your
program execution is stored

–

Which functions are called, in
what order

–

Which variables are created,
and where

–

When a block of code is executed
{ } , a stack frame is created

–

When the block is completed, the
stack frame is removed (and
anything inside it destroyed)

–

When a stack frame is created,
enough memory to store
everything in the frame is

allocated to the frame

The Stack

int main(void) {
 int user_age = 20;
 int array[5] = {1, 2, 3, 4,
5};

 return 0;
}

The Stack
int add_two_ints(int a, int b) {
 int sum = a + b;
 return sum;
}

int main(void) {
 int new_int = add_two_ints(1, 4);

 retrun 0;
}

Quick demo + whiteboard

What if we want to create memory
with an undetermined size?

We can't use stack frames... the
program needs to know how big
the frame is before it creates it

–

Enter: The Heap

The Heap is a large
block of memory that sits
outside the stack

–

Unlike the stack, the
heap is managed
entirely by the
programmer (in C)

–

Nothing is automatically
declared or destroyed in
the Heap, you have to
manage it all! (This can
be dangerous)

–

With great power, comes
great responsibility

–

Using the heap
C provides us some functions to

interact with the heap.

malloc()

malloc -> Memory Allocation
(allocate memory on the heap)

–

Returns a pointer to the location
on the heap

–

We can decide how large the
allocation

–

Calling malloc

Example:

#include <stdio.h>

int main(void) {
 malloc(1000);
 malloc(sizeof(int));
 malloc(sizeof(char) * 50);

 return 0;
}

ptr = (cast-type*) malloc(byte-size)–

Whiteboard

Dynamic arrays on the heap

A common way of using malloc is to create
dynamic arrays:

int main(void) {
 int num_elements;
 scanf("%d", num_elements);

 int *data = malloc(num_elements *
sizeof(int));

 return 0;
}

Freeing malloc'd data

This is where the responsibility comes
in...

–

C automatically frees stack frames after
they finish, meaning we don't have to
clean up after ourselves.

–

We need to manually clean up the
heap, otherwise we will cause a
memory leak.

–

free

int *data = malloc(num_elements *
sizeof(int));
...
free(data);

realloc

Either resizes the existing allocation
(freeing what is no longer needed)

–

Or allocates a new allocation–
Always returns the address of the
new allocation, even if it's in the
same position

–

realloc

int *data = malloc(num_elements *
sizeof(int));
num_elements += 40;

data = realloc(data, num_elements
* sizeof(int));
...
free(data);

Remember, we can treat pointers
like arrays

Demo

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

