Assignment 1 due reminder
Good luck <3




Pointers Recap

— Used to store a memory address

— Can point to any type of data (int,
struct, array)

— The data at the address can be
accessed (dereference) *

— The address at a variable can be
retrieved (address_of) &




Pointers syntax cheat sheet

— Declare a pointer: int
*int poilnter;
— Address of: ¢my variable;

— Dereference (Get the value at a
pointer): *int pointer;




Dynamic Arrays and Memory




The Stack

— Where information about your
program execution is stored

— Which functions are called, in
what order

— Which variables are created,
and where




— When a block of code is executed
{ }, astack frame is created

— When the block is completed, the
stack frame is removed (and
anything inside it destroyed)




When a stack frame is created,
enough memory to store
everything in the frame is

allocated to the frame




The Stack

int main (void) {
int user age
int arrayl[5]
St

return O;

20;

{1,

2y

3,




" array[s} 1 ’ ’ ) ’




The Stack

int add two ints(int a, int b) {
int sum = a + b;

return sum;

int main (void)
int new int

retrun 0O;

{

add two ints (1,




add_two_ints




Quick demo + whiteboard




What if we want to create memory
with an undetermined size?

— We can't use stack frames... the
program needs to know how big
the frame is before it creates it




Enter: The Heap




— The Heap is a large
block of memory that sits
outside the stack

— Unlike the stack, the
heap is managed
entirely by the
programmer (in C)

— Nothing is automatically
declared or destroyed in
the Heap, you have to
manage it all! (This can
be dangerous)

— With great power, comes
great responsibility




Using the heap
C provides us some functions to
iInteract with the heap.




malloc ()

— malloc ->Memory Allocation
(allocate memory on the heap)

— Returns a pointer to the location
on the heap

— We can decide how large the
allocation




Calling malloc
— ptr = (cast-type*) malloc (byte-size)

Example:
#include <stdio.h>
int main (void) {
malloc (1000) ;
malloc (sizeof (int)) ;

malloc(sizeof (char) * 50);

return 0;




Whiteboard




Dynamic arrays on the heap

A common way of using malloc is to create
dynamic arrays:
int main (void) {
int num elements;

scanf ("%d", num elements);

int *data = malloc (num elements *
sizeof (int));

return 0O;




Freeing malloc'd data

— This is where the responsibility comes
In...

— C automatically frees stack frames after
they finish, meaning we don't have to
clean up after ourselves.

— We need to manually clean up the
heap, otherwise we will cause a
memory leak.




free

int *data = malloc (num elements *
sizeof (int)) ;

free (data) ;




realloc

— Either resizes the existing allocation
(freeing what is no longer needed)

— Or allocates a new allocation

— Always returns the address of the
new allocation, even if it's in the
same position




realloc

int *data = malloc (num elements *

sizeof (int)) ;
num elements += 40;

data = realloc (data,
* gizeof (int)) ;

free (data) ;

num_elements




Remember, we can treat pointers
like arrays




Demo




Feedback
https://forms.office.com/r/K3PjvWebtD

COMP1511 Lecture Feedback



https://forms.office.com/r/K3PjvWebtD

