
Assignment 1 due
reminder

Good luck <3

Pointers Recap

Used to store a memory
address

–

Can point to any type of data
(int, struct, array)

–

The data at the address can
be accessed (dereference) *

–

The address at a variable can
be retrieved (address_of) &

–

Pointers syntax cheat
sheet

Declare a pointer: int
*int_pointer;

–

Address of:
&my_variable;

–

Dereference (Get the
value at a pointer):
*int_pointer;

–

Dynamic Arrays and
Memory

The Stack

Where information about
your program execution
is stored

–

Which functions are
called, in what order

–

Which variables are
created, and where

–

When a block of code is
executed { } , a stack
frame is created

–

When the block is
completed, the stack
frame is removed (and
anything inside it
destroyed)

–

When a stack frame is
created, enough memory
to store everything in the
frame is allocated to the

frame

The Stack

int main(void) {
 int user_age = 20;
 int array[5] = {1,
2, 3, 4, 5};

 return 0;
}

The Stack
int add_two_ints(int a,
int b) {
 int sum = a + b;
 return sum;
}

int main(void) {
 int new_int =
add_two_ints(1, 4);

 retrun 0;
}

Quick demo + whiteboard

What if we want to create
memory with an
undetermined size?

We can't use stack
frames... the program
needs to know how big
the frame is before it
creates it

–

Enter: The Heap

The Heap is a large
block of memory that
sits outside the stack

–

Unlike the stack, the
heap is managed
entirely by the
programmer (in C)

–

Nothing is
automatically
declared or
destroyed in the
Heap, you have to
manage it all! (This
can be dangerous)

–

With great power,
comes great
responsibility

–

Using the heap
C provides us some

functions to interact with
the heap.

malloc()

malloc -> Memory
Allocation (allocate
memory on the heap)

–

Returns a pointer to the
location on the heap

–

We can decide how large
the allocation

–

Calling malloc

Example:

#include <stdio.h>

int main(void) {
 malloc(1000);
 malloc(sizeof(int));
 malloc(sizeof(char) * 50);

 return 0;
}

ptr = (cast-type*)
malloc(byte-size)

–

Whiteboard

Dynamic arrays on the heap

A common way of using malloc is
to create dynamic arrays:

int main(void) {
 int num_elements;
 scanf("%d", num_elements);

 int *data =
malloc(num_elements *
sizeof(int));

 return 0;
}

Freeing malloc'd data

This is where the
responsibility comes in...

–

C automatically frees stack
frames after they finish,
meaning we don't have to
clean up after ourselves.

–

We need to manually clean
up the heap, otherwise we
will cause a memory leak.

–

free

int *data =
malloc(num_elements *
sizeof(int));
...
free(data);

realloc

Either resizes the existing
allocation (freeing what is
no longer needed)

–

Or allocates a new
allocation

–

Always returns the address
of the new allocation, even
if it's in the same position

–

realloc

int *data =
malloc(num_elements *
sizeof(int));
num_elements += 40;

data = realloc(data,
num_elements *
sizeof(int));
...
free(data);

Remember, we can treat
pointers like arrays

Demo

Feedback

https://forms.office.com/r/K3PjvWebtD

https://forms.office.com/r/K3PjvWebtD

