
COMP1511 Programming
Fundamentals

with Tammy

P O I N T E R S

WEEK 5 LECTURE 2

WEEK 6 REVISION SESSIONS
MONDAY

13:00-15:00
STRING LAB J17

WEDNESDAY
16:00-18:00

VIA MICROSOFT TEAMS
(SIGN UP VIA LINK ON

FORUM*)

WEEK 6 FLEXIBILITY
WEEK NEXT WEEK
NO LECTURES
NOR TUT-LABS!

Announcements

*Will be announced today

HELP SESSIONS
THEY WILL RUN IN

WEEK 6!
STAGE-SPECIFIC FOR

ASSN1
CHECK COURSE
WEBSITE FOR
TIMETABLE :)

LIVE CODE HERE:

https://cgi.cse.unsw.edu.au/~cs1511/24T2/live/week_5/

THIS LECTURE, NEW TOPIC:

Introduction to Pointers!

All the data in your code are stored in the computer memory
Visualise it as a grid with values and each slot in the grid has a unique
memory address (sequential hexadecimal values) (like how we have
our home addresses, they live somewhere in memory!)
Each slot have a unique memory address with the relevant data in it
e.g. an integer value

Memory

Who has heard of the term
“Pointers”?

Who has heard of the term
“Pointers”?

Who has heard of the term
“Pointers”?

a variable that stores the memory address of another variable
aka. “a variable that points to another variable”

gives us the power to modify things at the source (especially when
working with functions)
to declare a pointer in our code - specify the type the pointer points to
with an asterisk:

What are pointers?

E.g.

type_pointing_to *variable_name;

int *num_ptr;
(a pointer variable that can store an address to an integer variable)

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

number
8

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

number
8

number_ptr
0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

number
8

number_ptr
0xFF40

(the & might look familiar from scanf!)

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

number
8

number_ptr
0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

AND *number_ptr == number == 8

number
8

number_ptr
0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

AND *number_ptr == number == 8

number
8

number_ptr
0xFF40

3 KEY COMPONENTS!

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

AND *number_ptr == number == 8

Declare

3 KEY COMPONENTS!

number
8

number_ptr
0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

AND *number_ptr == number == 8

Declare

Assign the address

3 KEY COMPONENTS!

number
8

number_ptr
0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

AND *number_ptr == number == 8

Declare

Assign the address

Dereference

3 KEY COMPONENTS!

number
8

number_ptr
0xFF40

Memory Stack

0xFF4C

0xFF48

0xFF44

0xFF40

LET’S...

Declare and initialise an integer variable1.

2. Declare an integer pointer variable and assign the
address of `number` to it

SO NOW...
number == 8
number_ptr == 0xFF40

AND *number_ptr == number == 8

Declare

Assign the address

Dereference

3 KEY COMPONENTS!

number
8

number_ptr
0xFF40

In Short

Delcare a pointer variable - using type_pointing_to *1.

2. Assign pointer variable with address of another variable
- using &

3. Dereference pointer variable - using *

type_pointing_to *variable_name;

number_ptr = &number;

*number_ptr
(go to the address that this pointer variable is assigned and find what is at that address)

int *variable_name;

CODE DEMO!
pointer_intro.c

fundamentals of the use of pointers
modifying values when pointers are involved

Mini Quiz: Will the following work in code?

NO - THEY ARE DIFFERENT TYPES

NO - LHS IS AN INT, RHS IS A POINTER
(ADDRESS)

YES!

DEPENDS - IS NUMBER_PTR INITIALISED?

BREAK TIME!

We have a problem without it:
We cannot return multiple values from a function... cannot return
an array...

This will cause issues in tasks like swapping two variable values in a
function (code demo)
Food for thought: how would you hack your way around this without
pointers?

What’s the point?

CODE DEMO!
pointer_in_function.c

demonstrate the purpose of pointers
using pointers in functions

EXTRA CODE DEMO!
array_addresses.c

demonstrate array decaying into a pointer
demonstrate addresses in an array

Don’t forget, we can actually have different types of pointers

type_pointing_to *variable_name;

int value = 8;
int *ptr = &value;

printf(“%d\n”, *ptr);

Don’t forget, we can actually have different types of pointers

type_pointing_to *variable_name;

double value = 8.8;
double *ptr = &value;

printf(“%lf\n”, *ptr);

Don’t forget, we can actually have different types of pointers

type_pointing_to *variable_name;

char value = ‘t’;
char *ptr = &value;

printf(“%c\n”, *ptr);

Don’t forget, we can actually have different types of pointers

type_pointing_to *variable_name;

Struct Pointers!

CODE DEMO!
struct_pointer.c

demonstrate the syntax for struct pointers
. vs. ->

Linked List after flex week :)

Why struct pointers?

KAHOOT!

FEEDBACK
(PRETTY PLEASE
WITH A CHERRY

ON TOP)
https://forms.office.com/r/FTgRVnZuRU

SUMMARY OF TODAY

Pointers :)

FLEX WEEK NEXT WEEK!
==

NO CLASSES
(BUT YES HELP SESSIONS + REVISION SESSIONS)

If you have any questions:

COURSE FORUM + HELP
SESSIONS!

ADMIN RELATED

CS1511@UNSW.EDU.AU

COURSE RELATED

And come say hi if you see me around on campus :D

