Style
How to write clean code

struct thingy {
int x;
double vy;

int calcualte result(struct thingy x, struct thingy y) {
1if((x.x - y.y) > (y.x - X.y)) |
return O;
} else if ((y.x - xX.y) > (x.X - y.Vy)) {
return 1
} else {
return -1;

int main (void) {
struct thingy x;

x.x = 50;
Xx.y = 5.0;
y.x = 45;
Vy.X = 2.5;

calculate result(x, V);

Robert €. Martin Seres

Book suggestion

— | don't recommend C|ean Code

many bOO kS A Handbook of Agile Software Craftsmanship

Robert C Martin

— This is a good one

Forewoed by James O. Coplen

1511 has a style guide

Follow the style guide (will
be marked

There is no right style
guide, but you should

follow it

Constants

Constants and Enumerations

Use #define or enum to give constants names.
You are only allowed to use #define's for literals (i.e. numbers, strings, characters) only.

#defines must be written in ALL_ CAPS WITH_UNDERSCORES. enum names must be wri
lower snake case, and fields must be written in UPPER_SNAKE _CASE. You should never
enum -- in other words, do not use an enum to represent a specific numerical value.

Explanation
Unexplained numbers,often called magic numbers, appearing in code make it hard to uni

If a number appears multiple times in the code, bugs are created when the code changed
of the number are changed.

A similar problem is that a number may appear in the code for multiple reasons, e.g. a co
like 10, and if the code needs to be changed it can be hard to determine which occurrenc
be changed.

Example
fidefine DAYS_OF _WEEK 7

enum days {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, WEEKEND};

int array[DAYS_OF_WEEK];

int 1 = 0;

while (i < DAYS_OF_WEEK) {
ali] = 1;

T4+

Don't Do This

Let's fix this up:

struct thingy {
int x;
double vy;
}i

int calcualte result(struct thingy X, struct thingy y) {
if((x.x - y.y) > (y.x - x.y)) |
return 0O;
} else 1if ((y.x - x.y) > (x.x - yv.y)) |
return 1
} else {
return -1;

int main (void) {
struct thingy x;

x.x = 50;
Xx.y = 5.0;
y.X = 45;
y.Xx = 2.5;

calculate result(x, y);

Command Line Arguments

So far...

— We can pass input into functions:

1nt cool calculation(int x, 1nt
Y)

— int x, int vy are the input, or arguments
into the function

We can use the input to determine how the
function runs

int cool calculation(int x, 1nt y) {
1f (x > 0) {
// do something when x is positive
} else {
// do something if x 1s negative

J

How can we do this for entire programs?

Command Line Arguments

Command Line Arguments

— We can provide input via user input (scanf)

— Maybe we don't want the input to come from the
user, or we already have the input

— We would like to be able to pass input to a
program

— We can modify main to allow for CLI

before

int main (void) {

J

after

int maln(int argc, char *argvi[]) {

[/ ...
J

Quick demo

String to int

— Sometimes we want to read in numbers
— But all standard input is text-based
— 6 Isreally "o"

Use the atoi() function to convert strings to
integers

— Stands for ASCII to Integer

Included In stdlib.h

— atoi(const char *str)

— atol, atof and atoll all exist (long, float, long
long)

One more thing:

— Counting while loops is common :

int 1 =
while (i < SOME NUM) { i++; }

— S0 common, that a syntactical sugar exists
that makes it a little easier

While loop

int 1 = 0
while (1 < SOME NUM) {

1++;
}

For loop

for (int 1 = 0; 1 < SOME NUM; 1++)

More demo

Feedback
https://forms.office.com/r/K3PjvWebtD

COMP1511 Lecture Feedback

https://forms.office.com/r/K3PjvWebtD

